SOFTWARE COMPLEXITY METRICS IN GENERAL
AND IN THE CONTEXT OF ISO 26262
SOFTWARE VERIFICATION REQUIREMENTS

MIROSLAW STARON, ASSOCIATE PROFESSOR, SOFTWARE ENGINEERING
CHALMERS | UNIVERSITY OF GOTHENBURG

WWW.STARON.NU

GOTEBORGS
UNIVERSITET

Motivation for our research — safe cars

« The number of functions that are software steered grows as well
— Autonomous driving >> 50 pure software functions

« Exponential growth of vehicle’s software size
— The number of ECUs grows exponentially (2 ECUs in 1970 to over 130 in 2016)
— The amount of software grows exponentially

Downloadable SW Size

« We face new challenges

— How to verify and validate
all the software?

— How to increase sw dev. speed
if the sw. complexity grows?

Source: www.softWar

WWW.STARON.NU

GOTEBORGS
UNIVERSITET

Outline of the talk

« Software complexity
— Basic concepts
— New scenarios for software use
— New data sets available

* Overview of ISO 26262
— Basic concepts
— Software in ISO 26262
— Software verification requirements

« Challenges for verifying and validating

— 1SO 26262 verification requirements linked to software verlflcatlon
techniques -

— Combining techniques to increase the level of verification and vahdatlon

SOFTWARE COMPLEXITY

WWW.STARON.NU

44

GOTEBORGS
UNIVERSITET

Complexity in the software of modern cars

» Software complexity < .

— The degree of connectivity between compledty Problem domain
entities in a program

° ; . Dat Sensor
Metrics (examples) | System domain RGN, complexity
— Cyclomatic complexity metric (McCabe)
— Software science metrics (Halstead)
— Software Structure Metrics (Henry and

Kafur?) _ _ _ Algorithm Decision Soft d .
— Metrics Suite for Object Oriented complexity complexity ortware domain

Design (Chidamber and Kamerer)
— Branching complexity (Sneed)
— Data access complexity (Card)
— Data complexity (Chapin) _ Tooling
— Data flow complexity (Elshof) Process domain complexity
— Decisional complexity (McClure)

-

GOTEBORGS
UNIVERSITET

WWW.STARON.NU

Some of the most common complexity
metrics, cont.

Name of the Measure

Description

McCabe’s cyclomatic
complexity (1976)

Halstead measures (1977)
Fan-out (Henry and Kafura
1981)

Fan-in (Henry and Kafura 1981)
Coupling measures of Henry
and Kafura (1981)

Chidamber and Kemerer OO
measures (1994)

Size measures

Readability measures, e. g.
Tenny (1988), Buse and Weimer
(2010)

The number of linearly independent paths in the control flow graph of
code. This can be calculated by counting the number of control statements
in the code

7 measures completely based on number of operators and operands
Number of unique invocations found in a given function

Number of calls of a given function elsewhere in the code
Based on size, fan-in, and fan-out

Inheritance level and several size measures for class

Lines of code, number of statements, etc.
Line length, indentations, length of identifiers, etc.

WWW.STARON.NU

GOTEBORGS
UNIVERSITET

How often are they used Iin industry?

70

|

S
o
|
I

/

The number of responses

N
o

Never heard of it
Never used it

10

Hardly ever
5 Monthly
Chidamber Halstead

and Henry and Weekly

Kemerer Kafura Raymond
and

Weymer,
etc. Size

Survey done by V. Antinyan, M. Staron, A. Sandberg, J. Hansson, in submission

WWW.STARON.NU

GOTEBORGS
UNIVERSITET

Complexity of decision algorithms in
practice (automotive)] .

System domain

of independent data paths

180
160
140
120

100
80
6
4
20
0 || — — — —

o o
o ~<\‘\' Q A7 N 87 o* o°' N & &
o < e O S A) S o Q) &
K (2 ¢ < 2 &

LA RN S

Process domain

o O

Altinger, H., Siegl, S., Dajsuren, Y., & Wotawa, F. (2015, May). A novel industry grade dataset for fault prediction based on
model-driven developed automotive embedded software. In 2015 IEEE/ACM 12th Working Conference on Mining Software
Repositories (MSR), pp. 494-497, IEEE Computer Society Press.

;) WWW.STARON.NU

e
iy *
iR

GOTEBORGS
UNIVERSITET

Implications

« One control path => at least one test case
— 511 for each path
— test all combinations (theoretical) — anything between 511 and 1.5 * 10?2

— In practice >> 1 trillion 102 test cases is required due to co-dependency
of test cases

« One control path => at least one fault injection
— 511 injections

 One test case => one mutation
— 511 — 1.5 * 1022 mutations

OVERVIEW OF 1SO 26262
ROAD VEHICLES — FUNCTIONAL SAFETY

GOTEBORGS
UNIVERSITET

ISO 26262 — Functional Safety — Road

vehicles

1. Vooabulary

2. Management of functional safety

[2:5 Ovrat sty marsgorment | [28 swety maragarment cuing e development | (27 Seety managermart s reeesa o |
3. Conoept phase i 4. Product development: system level y I-vrmmuon ‘and operation

|a.s|unmnm T . m&w%w I tnmu-!umua_a _ | bﬁm I

3-8 Intietion of the sately facycle A 2 pr e 78 Operation, service

‘

[assassment

1ISO 26262

WWW.STARON.NU

— Chapter 6: Product development:

software level

- Chapter 8, clause 9: Verification

Source of figure: ISO, C. (2011). "26262, Road vehicles—Functional safety." International Standard ISO/EDIS 2626

é" 38
i
4
3
:
8 Table 9 — Methods for the verification of software unit design and implementation
N ASIL
Methods
[88 Trtarfaces within ditributed] -10 Documentation A B C D
88 ication and maney of Juremarts - tools
13 Qualfcaton o hariwars corgenenis | | 12 | Walk-through® ++ + o o
18-8 Verification 3-44 Proven in use argument
g oty -oriented analyses 1b [Inspection® + ++ ++ ++
:;:m. ™ = ‘With respect to ASIL tekoring 27 7 i . . .
1c | Semi-formal verfication + + ++ T
10. Guideline on SO 28262 (Informative)
1d |Formal verification o + +
le |Control flow analysiste + + +
1f |Data flow analysis®e + + 4 +
1g |[Static code analysis + ++ ++ ++
1h |Semantic code analysisd + + + +

WWW.STARON.NU

GOTEBORGS
UNIVERSITET

Software complexity in ISO 26262

C h apter 6 Table 4 — Mechanisms for error detection at the software architectural level
ASIL
Methods
A B c D
° Data CO m pleXIty 1a |Range checks of input and output data ++ ++ ++ ++
1b | Plausibility check?® + + + ++
— Data structures, :

1c |Detection of data errors® + + + +
Classesl paCketS 1d | External monitoring facility® o + + ++
1e | Control flow monitoring o + ++ ++
1f | Diverse software design o o + ++

@ Plausibility checks can include using a reference model of the desired behaviour, assertion checks, or comparing signals from

different sources.

b Types of methods that may be used to detect data errors include error detecting codes and multiple data storage.

¢ An external monitoring facility can be, for example, an ASIC or another software element performing a watchdog function.

Table 6 — Methods for the verification of the software architectural design

Methods ASIL
» Code/control flow A B lcC D
. 1a |Walk-through of the design? ++ + o 0
Com p I eXlty 1b | Inspection of the design® + ++ ++ ++
. 1¢ | Simulation of dynamic parts of the design® + + ++
- AI g Orlth ms y State 1d | Prototype generation o] o ++
maChII’]eS, bIOCk 1e |Formal verification) o + +
. 1f | Control flow analysis® + + ++ ++
d|ag rams 1g |Data flow analysis® + + ++ ++
a4 In the case of model-based development these methods can be applied to the model.
b Method 1c requires the usage of executable models for the dynamic parts of the software architecture.
¢ Control and data flow analysis may be limited to safety-related components and their interfaces.

GOTEBORGS
UNIVERSITET

Overview of V&V requirements from 1SO 26262
Software design and implementation

void main(int a) {

« Walkthrough

* Inspection if (2 ==0) {

 Semi-formal verification
} else {

« Control-flow analysis

— McCabe cyclomatic complexity

 Data-flow analysis
« Static code analysis

« Semantic code analysis

COMBINING FAULT INJECTION AND
MUTATION TESTING

Rana, R., Staron, M., Berger, C., Hansson, J., Nilsson, M., & Térner, F. (2013, July). Increasing
Efficiency of ISO 26262 Verification and Validation by Combining Fault Injection and Mutation Testing
with Model based Development. In ICSOFT (pp. 251-257).

Rana, R., Staron, M., Berger, C., Hansson, J., Nilsson, M., & Térner, F. (2014). Early Verification and
Validation According to 1ISO 26262 by Combining Fault Injection and Mutation Testing. In Software
Technologies (pp. 164-179). Springer Berlin Heidelberg.

WWW.STARON.NU

GOTEBORGS
UNIVERSITET

Fault injection

Principles of mutation testing

« Exchange a piece of
code into a different
onw

 Observe whether the
change results in
test cases failures

WWW.STARON.NU
R

GOTEBORGS
UNIVERSITET

Mutation Testing

Principles of mutation testing

Compile Phase Unit Testing

Original source code

''''' Live
mutant

Mutant
generator

mutant

Mutation operators

Figure: http://muclipse.sourceforge.net

GOTEBORGS
UNIVERSITET

Mutation testing

WWW.STARON.NU

Overview of major techniques/tools

value
decision .
- by kind
statement
source code

byte code = by generation

naive
manual
convention based - by test selection

coverage based

naive
mutant schmeta
debugger hotswap — by mutant insertion

instrumentation api’

naive

early exit (coarse) by mutant deletion

early exit (fine)

+

Mutation classifications

+ Overview

Mutants o]

)

Mutation testing

Tools

Data selection -

il

=3~

Jumble
MAJOR

PIT

Bacterio
Javalanche
Jester
Mul/MuC
MUGAMMA
microJava
CREAM
NinjaTurtles
Nester
Visual mutator
Mutandis
AjaxMutator
Grunt
Mutant
Heckle
MutPy
PyMuTester
NosePlug-in

Evolutionary ©

WWW.STARON.NU

GOTEBORGS
UNIVERSITET

Summary

« Two take-aways
— As the number of software functions (usage scenarios) increase in cars
=> complexity of the software increases

— Testing for all possible execution paths becomes almost impossible =>
we need to test for subsets and understand how good our testing is

* Further directions
— Software reliability growth modelling and latent defect inflow predlctlon
— Combining formal verification with software testing

— Using machine learning/search-based software testing to find the best
testing combination for a given software functionality

GOTEBORGS
UNIVERSITET

Overview of V&V requirements from 1SO 26262
Software design and implementation

» Walkthrough

file class function McCabe 01 McCabe 02 Delta
. - b | 51
* Inspection : a7 &
57 90 33
. . - . - 30 30
 Semi-formal verification : 28 28
- 27 27
. - 27 27
 Control-flow analysis : 26 2
- 26 26
] - 25 25
 Data-flow analysis S] S

23 3L
< E] N

« Static code analysis 142

-

« Semantic code analysis

WWW.STARON.NU

GOTEBORGS
UNIVERSITET

Benefits of combining

« Assessment of the quailty of software

— We know if the software can handle problems with failures during the
operation

« Assessment of the quality of the "process” — or testing
— We know if the test cases test the faulty programs
— We know if we can trust the testing

 Where do we go from here
— Software reliability assessment

WWW.STARON.NU

GOTEBORGS
UNIVERSITET

Problem domain

System domain

Algorithm Decision Software domain

complexity complexity

Process domain

GOTEBORGS
UNIVERSITET

Overview of V&V requirements from 1SO 26262
Software design and implementation

« Walkthrough

* Inspection

« Semi-formal verification
 Control-flow analysis

« Data-flow analysis

« Static code analysis

« Semantic code analysis

Follow-up

Individual
preparation

Inspection
meeting

+ Efficiency

125 source statement/hour during individual
preparation

90-125 statements/hour can be inspected during
inspection meeting

* Inspection is therefore an expensive process

Inspecting 500 lines costs about 40 man/hours effort —
about €2000

