
SOFTWARE COMPLEXITY METRICS IN GENERAL
AND IN THE CONTEXT OF ISO 26262
SOFTWARE VERIFICATION REQUIREMENTS

MIROSLAW STARON, ASSOCIATE PROFESSOR, SOFTWARE ENGINEERING

CHALMERS | UNIVERSITY OF GOTHENBURG

Motivation for our research – safe cars

• The number of functions that are software steered grows as well
– Autonomous driving >> 50 pure software functions

• Exponential growth of vehicle’s software size
– The number of ECUs grows exponentially (2 ECUs in 1970 to over 130 in 2016)

– The amount of software grows exponentially

• We face new challenges
– How to verify and validate

all the software?

– How to increase sw dev. speed
if the sw. complexity grows?

WWW.STARON.NU

Source: www.software-center.se,

Outline of the talk

• Software complexity
– Basic concepts

– New scenarios for software use

– New data sets available

• Overview of ISO 26262
– Basic concepts

– Software in ISO 26262

– Software verification requirements

• Challenges for verifying and validating
– ISO 26262 verification requirements linked to software verification

techniques

– Combining techniques to increase the level of verification and validation

WWW.STARON.NU

SOFTWARE COMPLEXITY

WWW.STARON.NU

Complexity in the software of modern cars

WWW.STARON.NU

• Software complexity
– The degree of connectivity between

entities in a program

• Metrics (examples)
– Cyclomatic complexity metric (McCabe)

– Software science metrics (Halstead)

– Software Structure Metrics (Henry and
Kafura)

– Metrics Suite for Object Oriented
Design (Chidamber and Kamerer)

– Branching complexity (Sneed)

– Data access complexity (Card)

– Data complexity (Chapin)

– Data flow complexity (Elshof)

– Decisional complexity (McClure)

Some of the most common complexity
metrics, cont.

WWW.STARON.NU

Name of the Measure Description

McCabe’s cyclomatic
complexity (1976)

The number of linearly independent paths in the control flow graph of
code. This can be calculated by counting the number of control statements
in the code

Halstead measures (1977) 7 measures completely based on number of operators and operands

Fan-out (Henry and Kafura
1981)

Number of unique invocations found in a given function

Fan-in (Henry and Kafura 1981) Number of calls of a given function elsewhere in the code

Coupling measures of Henry
and Kafura (1981)

Based on size, fan-in, and fan-out

Chidamber and Kemerer OO
measures (1994)

Inheritance level and several size measures for class

Size measures Lines of code, number of statements, etc.

Readability measures, e. g.
Tenny (1988), Buse and Weimer
(2010)

Line length, indentations, length of identifiers, etc.

How often are they used in industry?

WWW.STARON.NU

Survey done by V. Antinyan, M. Staron, A. Sandberg, J. Hansson, in submission

Complexity of decision algorithms in
practice (automotive)

WWW.STARON.NU

0

20

40

60

80

100

120

140

160

180

of independent data paths

Altinger, H., Siegl, S., Dajsuren, Y., & Wotawa, F. (2015, May). A novel industry grade dataset for fault prediction based on

model-driven developed automotive embedded software. In 2015 IEEE/ACM 12th Working Conference on Mining Software

Repositories (MSR), pp. 494-497, IEEE Computer Society Press.

Implications

• One control path => at least one test case
– 511 for each path

– test all combinations (theoretical) – anything between 511 and 1.5 * 1022

– In practice >> 1 trillion 1012 test cases is required due to co-dependency

of test cases

• One control path => at least one fault injection
– 511 injections

• One test case => one mutation
– 511 – 1.5 * 1022 mutations

WWW.STARON.NU

OVERVIEW OF ISO 26262

ROAD VEHICLES — FUNCTIONAL SAFETY

WWW.STARON.NU

ISO 26262 – Functional Safety – Road
vehicles

ISO 26262

– Chapter 6: Product development:

software level

- Chapter 8, clause 9: Verification

Source of figure: ISO, C. (2011). "26262, Road vehicles–Functional safety." International Standard ISO/FDIS 26262.

WWW.STARON.NU

Software complexity in ISO 26262
Chapter 6

• Data complexity
– Data structures,

classes, packets

• Code/control flow

complexity
– Algorithms, state

machines, block

diagrams

WWW.STARON.NU

Overview of V&V requirements from ISO 26262

Software design and implementation

• Walkthrough

• Inspection

• Semi-formal verification

• Control-flow analysis

– McCabe cyclomatic complexity

• Data-flow analysis

• Static code analysis

• Semantic code analysis

void main(int a) {

if (a == 0) {

} else {

}

}

COMBINING FAULT INJECTION AND

MUTATION TESTING

WWW.STARON.NU

Rana, R., Staron, M., Berger, C., Hansson, J., Nilsson, M., & Törner, F. (2013, July). Increasing

Efficiency of ISO 26262 Verification and Validation by Combining Fault Injection and Mutation Testing

with Model based Development. In ICSOFT (pp. 251-257).

Rana, R., Staron, M., Berger, C., Hansson, J., Nilsson, M., & Törner, F. (2014). Early Verification and

Validation According to ISO 26262 by Combining Fault Injection and Mutation Testing. In Software

Technologies (pp. 164-179). Springer Berlin Heidelberg.

Fault injection

Principles of mutation testing

• Exchange a piece of

code into a different

onw

• Observe whether the

change results in

test cases failures

WWW.STARON.NU

Mutation Testing

Principles of mutation testing

Figure: http://muclipse.sourceforge.net

WWW.STARON.NU

Mutation testing

Overview of major techniques/tools

WWW.STARON.NU

Summary

• Two take-aways

– As the number of software functions (usage scenarios) increase in cars

=> complexity of the software increases

– Testing for all possible execution paths becomes almost impossible =>

we need to test for subsets and understand how good our testing is

• Further directions

– Software reliability growth modelling and latent defect inflow prediction

– Combining formal verification with software testing

– Using machine learning/search-based software testing to find the best

testing combination for a given software functionality

WWW.STARON.NU

Overview of V&V requirements from ISO 26262

Software design and implementation

• Walkthrough

• Inspection

• Semi-formal verification

• Control-flow analysis

• Data-flow analysis

• Static code analysis

• Semantic code analysis

Benefits of combining

• Assessment of the quailty of software

– We know if the software can handle problems with failures during the

operation

• Assessment of the quality of the ”process” – or testing

– We know if the test cases test the faulty programs

– We know if we can trust the testing

• Where do we go from here

– Software reliability assessment

WWW.STARON.NU

WWW.STARON.NU

Overview of V&V requirements from ISO 26262

Software design and implementation

• Walkthrough

• Inspection

• Semi-formal verification

• Control-flow analysis

• Data-flow analysis

• Static code analysis

• Semantic code analysis

