University of Stuttgart
Germany

STPA Safety Analysis

Apply to software
at the system level

System Requirement
Specifications

\A v

Models
o~

s

STPAr results

STPA Swiss

System Design ——— A

A Comprehensive Safety Engineering Approach for
Software Intensive Systems based on STPA

Software Implementation
(code)
Fy

Stockholm, 17t March 2016

4th Scandinavian Conference on System & Software Safety

Exeacute

Asim
Abdulkhaleq

Motivation: Software of Today’s Complex Systems

& Today’s safety critical systems are increasingly reliant on software.

> Software is the most complex part of modern safety critical embedded systems.

> E.g. Amodern car has something close 100 million lines of software code in it,
running on 70 to 100 microprocessors.

. o1 Traction Control
Electronic Stability Control Back Camera

Stop & Go Adaptive Cruise Control Reverse Backup Sensors

Anti-Lock Braking Systems (ABS) Tire Pressure Monitoring

Electronic Brakeforce Distribution Systems
Adaptive Cruise Control (ACC)

Automatic Braking Systems Automatic Braking Systems

How to recognize the software risks in modern systems and
reduce them to a low level?

2/26

Agenda

N/

« Motivation v

\/

** Problem Statement & Research Objectives

\/

% Background

X Safety Analysis Techniques

f STAMP and STPA Approach
** STPA Swiss Approach
s* XSTAMPP: Tool support for STPA Swiss Approach
% [|llustrative Example: Adaptive Cruise Control System

** Conclusion & Future Work

Software Safety Challenges

& Safety is a system property and needs to be analysed in a system context.

> Therefore, software safety must be considered in the context of the system level to
ensure the whole system’s safety.

- o

’ *\ Monitored

T N
. _+ Variables

Verify the software
against its safety
requirements

» Software Verification approaches:
* Model checking (SMV, SPIN, .etc.)
* Testing approaches
¥ Functional correctness of software,
however, even perfectly correct software
can contribute in an accident.
X Not directly concern safety
X Test all software behaviours isimpossible

Input Input Data
“_ Devices tems

System

Output Dat

Software Critical Variables

STRASWISS

£

_——————

a7~ Output "\ | Controlled ,*~ N
Devices Variables ‘| o

-~ -

' ’ Identify appropriate

software safety
requirements

» Safety Analysis Techniques:
* FTA, FMEA, STPA

X FTA and FMEA have limitations to

cope with complex systems. STPA
is developed to cope with complex
systems, but its subject is system

not software.
4/26

Research Objectives & Contribution

& Research Objectives

> Integrate STPA safety activities in a software engineering process to allow safety and
software engineers a seamless safety analysis and verification.

> This will help them to derive software safety requirements, verify them, generate
safety-based test case and execute them to recognize the associated software risks.

¢ Contribution

- We contribute a safety engineering approach to
> derive software safety requirements at the system level
» transform them safety into formal specification in LTL/CTL
> verify them at the design and implementation levels and

> generate test cases from the information derived during STPA safety analysis.

- We develop a tool support called XSTAMPP to automate the proposed
approach.

Background: Safety Analysis Techniques

& There are over 100 different safety analysis techniques.

SSHA®

5,90?

-\
SCH ; “ "";\u

¢ There are some limitations with traditional safety analysis techniques:
O They assume that accidents are caused by component failures.

Q They are not adequate to address new accidents caused by component

interactions, human errors, management and organizational errors and software
errors [Leveson 2011].

6/26

Systems Approach to Safety Engineering(STAMP)

STAMP Model

— STAMP (Systems-Theoretic Accident Model and Processes)

is an accident causality model based on systems theory and systems
thinking

¢ Accidents are more than a chain of events, they involve
complex dynamic processes.

& Treat accidents as a control problem, not a failure problem.

4 Prevent accidents by enforcing constraints on component
behaviour and interactions.

¢ Captures more causes of accidents:

Component failure accidents

Unsafe interactions among components
Complex human, software behaviour
Design errors

Flawed requirements

esp. software-related accidents.

Leveson (2003); Leveson (2011)

7/26

STPA Safety Analysis Technique

& STPA (System-Theoretic Process Analysis)
O Developed by Prof. Leveson at MIT, USA, 2004
Q Built on STAMP model based on system and control theory rather than reliability.

O Treats safety as dynamic control problem rather than failure problem

Human/ Automated
Controller
: Monitored Feedback
Star.tmg Variables Variables
Point
Controller
Controlled > Feedback
Variables Control Processes | Variables
Algorithm Model
Actuators Sensors
Measured
Controlled Variables
Variables
> Controlled Process
Process Inputs L 5 Process Outputs

Disturbances

A generic control loop of system
8/26

STPA Approach Process

Input

Results

Start
= . | 1
el o) —
and design models Scope >, AESIE 1.—
safety requirements —_—
Fundamentals
Develop AN
Hierarchical > %
Control Structure 1
l Hierarchical Control
Structure
STPA Step1l: RN BN
|dentify Unsafe I — N — ——
Control Actions — g [—
i Unsafe Control Corresponding Safety
Actions Requirements
STPA Step2:ldentify g o
How each unsafe J , E ot
Control Action could
occur Hierarchical Control Structure
N:th process model
] g [p—

Unsafe Scenarios

Refined Safety Requirements

Safety Analysis
Report

9/26

STPA Swiss: A Software Safety Engineering Approach

& Major issues of using STPA in software development process:

¢
*

STPA is performed separately and has not been yet placed in software engineering process.

The STPA-generated software safety requirements are written in natural language, which we
can not directly use them in the verification and testing activities.

Identify the unsafe scenarios of complex software based on the combinations of process model
variable values manually is time and effort consuming.

STPA does not provide any kind of model to visualize the relationship between the critical
process variables of controller which have an affect of the safety of control actions.

l N System analyst & designer

System Requirement

Software requirements| STPA software

Specifications

Safety test Report

safety requirements

Design model

\ 4

}
I = —=
m : A 4 Safety requirements, context table, Software Safety Verification
&) _:> STPA Safety control structure diagram o
[}
b ! Analysis Traceability matrix Model Testing
I Checking Approach !
]
;:;et:(: : Safety test
Y : A | engineer

| Test Scripts Test Results !

S i o i s i Y e o i s i G s oy o o e i s i e Yy

STPA Swiss Safety Engineering Process

Implementation
(coding)

10/26

Detailed View of the STPA Swiss Approach

& The proposed approach can be applied during developing a new safe software

or on existing software of safety-critical system

0

STPA Safety Analysis

Apply to software
at the systemlevel

A 4

System Requirement
Specifications

\A v
System Design
Models

~

.

STPA results

Safety Control
Structure Diagram

Software Safety
Requirements

Unsafe Software /

Scenarios

A

Software Implementation
(code)

A

Execute

*Extract the verification

State flow model
(Simulink)

O ‘build

9 ‘:ormalize

Build Safe Software
Behavioural Model

Formal
Specifications

Formal Verification
(model checker)

Testing approach

lgenerate

Safety-based Test

Case Generation

4

Generate and

| Execute Test-scripts B

Traceability

l generate

Safety Verification

Report

11/26

Automated STPA Swiss Approach: XSTAMP Platform

¢ We developed an extensible platform tool support for STAMP safety engineering
called XSTAMPP as open source platform.

o o XSTAMPP -STPA Project->LegoACCSimulator->Establish Fundamentals->Control Structure
O B @ e - 218% M o+ ¥ Open STPA Verifier ~ v =~
™ Project Explorer = 0 Control Structure £2 = 0
—| [+ Preferences .* Palette [
P 2% Train to Train Collision Accident [acc] (= Manipulation Objects
> s dsss acc)
> 1 ssaddas facc] S2E)
P 2% test3556 [acc) D|Stance . {_i Marquee
> testcast s ¢ Ultrasonic
> E ACC STPA [hazx] (> Component Elements
> BB cc stoa vt e Sensor — Controler
¥ 2 Accsimulator (hazx) @
> . Accsimulatort [hazx) Actuator
¥ 2] Acc_sTOP_GO_BMW [hazx)
¥] Aircontroller (hazx)
> £ cnuas Heei sTPA hazx)] - @ Controlled Process
" B emcrsmaeroun fullystop ACC STOP & GO Simulator
¥ U Establish Fundamentals (— | Sensor
avmem mekti accelerate Software =
' System Goals decelerate (——] Control Action
Speed s
Hazards) .
Linking of Accidents and Hazzards |@ List of Control Actions
Safety Constraints —
& Design Requirenments | 4 Actuators (- Connecting Elements

Control Structure
¥ 15 Unsato Contot Acns Motor 1 & Motor 2 ¢ Speed Sensor

Control Actions

UnsafeControlActions Table | . |Dashed Arrow

Corresponding Safety Constraints

Arrow

v 25, Causal Analysis
¥ Control Structure With Process... (> Others
Context Tables

@ retrad Urate orrd ctors motor forces & Lego mindstorm robot current speed

4 Refined Safety Constraints

Text Box

Dashed Box

v

LTL Formula Table

? Causal Factors Table
STPA AntiCollision FPSO recovery4 [hazx]
STPA_ACC [hazx]
» STPA_ACC-2 [hazx]
STPA_Continental [hazx]
TestModel (hazx]
» Train [hazx)

)

B0C

o

sss [hazx]
test21 [hazx]
¥ test2s thazx)
o test30 [hazx]
: test32 [hazx]
> ‘: test36 [hazx]

> [test362 [hazx]
> 0 test3s (hazx)

>

VYVVVVYVYVVYVYY
-

-

'S

-

P .0 testSTPA [hazx]

> B0 testrules [hazx]

P .0 xst (hazx] < Decoration is ON Preferenes 4x215 214%

A There are unsaved changes

The XSTAMPP main window
www.XSTAMPP.de

12/26

Example: Applying STPA to ACC Simulator

¢ Adaptive Cruise Control System: is a well-known automotive system which has
strong safety requirements. ACC adapts the vehicle’s speed to traffic environment based
on a long range forward-radar sensor which is attached to the front of vehicle.

How to derive the safety requirements of
ACC software controller at the system level
and generate the safety-based test cases?

¢ Fundamentals of Analysis
¢ System-Level Accidents:
> ACC-1 : ACC vehicle crashes with a vehicle in front.
¢ System-Level Hazards

» H-1: ACC software controller does not maintain safe distance from front vehicle.

> H-2:The ACC software does not stop the vehicle when the front vehicle is fully stopped

http://www.iste.uni-stuttgart.de/en/se/forschung/werkzeuge/acc-simulator.html
13/26

Step1.a : Construct The Control Structure Diagram

¢ Control Structure diagram shows the main interconnecting components of the
ACC system at a high level.

frontDistance . Ultrasonic
(.5 Sensor

Decelerate

Fully Stop Controller

Accelerate [GRIACC STOP & GO Simulator |4 Speed

Software
’> Actuators: Sensor
Motor 1 & Motor 2 (_5 Speed Sensor
Controlled Process
motor forces }* Lego mindstorm robot current speed

Design and Safety Requirements of System

SSR0O.1 The ACC simulator should keep a safe distance between the vehicle and a
vehicle ahead

SSR0.2 The ACC simulator should stop the vehicle when there is a stopped vehicle in

the front.
14/26

Step1.b : Identify Unsafe Control Actions

& Unsafe Control Actions

Control Action

Not providing causes

Providing causes

Wrong timing or order

Stopped too soon or

hazard hazard causes hazard applied too long
Fully Stop UCAL.1 The ACC software stops the The ACC software does not
The ACC software does not robot suddenly when distance accelerate the speed after
bring the robot to fully stop to the robot ahead is too the robot vehicle ahead is
at standstill when the robot close starting move again.
vehicle ahead is fully stopped [Not Hazardous] [Not Hazardous]
[H-1,H-3]
Accelerate The ACC software does not UCA1.2 UCA1.3 UCAl.4
accelerate the speed when The ACC software accelerates The ACC software accelerates The ACC software accelerate
the robot vehicle ahead is so the speed of robot the speed before the robot the speed too long so that it
far in the lane. unintendedly when the time vehicle ahead is starting exceeds the desired speed of
[Not Hazardous] gap to the robot vehicle move again. the robot
ahead is smaller than desired [H-1,H-2] [H-2]
time gap
[H-1,H-2]
Decelerate UCAL.S UCAL.6 The ACC software decelerate UCAL.7

The ACC software does not
decelerate the speed when
the robot vehicle ahead is too
close in the lane.

[H-1]

The ACC software decelerate
the speed of robot
unintendedly when the time
gap to the robot vehicle is
approaching too fast. desired
time gap.

[H-4]

the speed when the robot
vehicle ahead is starting
move again.

[Not Hazardous]

The ACC software decelerate
the speed too short so that
it can not bring the robot

to fully stop when the robot
ahead is stopped.

[H-3]

Each unsafe control action is then translated into a system-level safety constraint

Example: The corresponding safety constraint of UCA1.1 is

SR1.1 The ACC software should bring the robot to fully stop at standstill when the
robot vehicle ahead is fully stopped.

15/26

Step 1.b: Understand how each UCA could occur

¢ Process model shows the critical variables which have an effect on safety of the

control actions. frontDistance T Ultrasonic
() Sensor
Controller
y
[i&} ACC STOP & GO Simulator Software
/ : q l\ Process Model
Four types oF plelEess hrloles currentspeed ReadSensorData
variables: ==0 :
. > minSpeed frontdistance<0
(1) Internal states variables ~—desiredspeed | | frontdistance==0
(2) Internal variables < desiredspeed | |_frontdistance >0
. . Fully Stop > desired d
(3) Interaction variables Accelerate esiredspeed | TaccMode
. . Decelerate off Speed
\(4) Environmental variables ¢
on
timeGap states
== Standby
Qcttjat;)r;:M or 2 < (deltaX + safetyTimeGap) Resume Speed Sensor
otor otor > (deltaX + safetyTimeGap) Cruise S
> safetyTimeGap Follow -~
<= safetyTimeGap Stop
Controlled Process
motor forces .‘ Lego mindstorm robot current speed

h 4

¢ Based on the concept of context tables of each safety-critical actions (John Thomas

2013), we generate the combination sets between process model values
16/26

Step1 : Automatically Generating Context Tables

¢ Apply the combinatorial

testing algorithm to reduce the number of

combination between the process model variables (Cooperation with Rick Kuhn,
National Institute of Standards and Technology, Computer Security Division, US).

Context Table of control action Decelerate in context not provided

Control Actions timeGap states currentspeed RadarSensorData Hazardous

Standby == > minSpeed Frontdistance>0 no

Follow < (deltaX + safetyTimeGap) ==desiredspeed Frontdistance>0 yes

Standby > (deltaX + safetyTimeGap) < desiredspeed Frontdistance>0 no

Standby > safetyTimeGap > desiredspeed Frontdistance>0 no

Standby <= safetyTimeGap == Frontdistance>0 no

Resume == ==desiredspeed Frontdistance>0 no

Decelerate Resume < (deltaX + safetyTimeGap) < desiredspeed Frontdistance>0 yes
Resume > (deltaX + safetyTimeGap) > desiredspeed Frontdistance>0 no

Resume > safetyTimeGap == Frontdistance>0 no

Resume <= safetyTimeGap > minSpeed Frontdistance>0 no

Stop == == Frontdistance>0 no

Stop < (deltaX + safetyTimeGap) > minSpeed Frontdistance>0 no

Stop <= safetyTimeGap > desiredspeed Frontdistance>0 no

Q By combinatorial testing algorithm:

We can automatically generate the context table.

We can achieve different combination coverages (e.g. pairwise coverage,
combinations and t-way coverage)

We can apply different roles and constraints to the combination to ignore some

values

17/26

Automatically Generate LTL formulae

& ACC software controller provides a safety critical action: accelerate signal

Control Process Model variables Hazardous
actions

Accelerate m CurrentSpeed RadarData m
Signal

< (deltaX + == desired speed Frontdistance>0 Cruise Yes

safeTimeGap)

> safeTimeGap <desired speed Frontdistance>0 Cruise No

< safeTimeGap > Desired speed Frontdistance>0 follow Yes (H1,
SSR1)

‘ Refine the software safety Requirements

SSR4 3: ACC should not provide accelerated signal when the TimGap is less or
equal the safeTimeGap while ACC in follow mode current speed is greater than

desired speed.

LTL;; G ((states=follow)&(timeGap<safeTimeGap)&(currentspeed>DesiredSpeed)&
frontdistance >0)->! ((controlAction=Accelerate)))

Generate LTL formula

18/26

Step 2 : Constructing the safe behavioural model of software controller

¢ To verify the design & implementation of software controller against the
STPA results and generate the safety-based test cases:
> Each software controller must be modelled in a suitable behavioural model

> The model should be constrained by STPA safety requirements

5 o e
[[software safety Requirements

SSR1.3 The ACC sof

oller should not provide the acceleration sij
when a safe distance is reached

Software safety requirements

STPA Results

ce >Desiredspeed Notapplied follow

Spaen Srranr &
O Srake Sansar
Yes (H1, fecele-alion Sigaal
SSRl) Grakinz signl)6' :-:’::-;Z”ﬂ Srocens 1
Context tables

wirasls and
nnnnnnnn

Controlstr/ctre & process model
@) \
*UJ —
UML state flow notation

Software Specification
A safe behavioural model of software controller

> Syntax of each transition of the safe behaiovural model:

»
>

[STPA safety requirement] (
[State O J | State 1]

19/26

Step 2 : The safe behavioural model of ACC software controller

h 4
[£44]] ACC STOP & GO Simulator Software
Process Model H
A safe behavioural model of ACC software Controller

lcurrentspeed ReadSensorData

== N ACcoff :

. minspeed b

==desiredspeed | | frontdistance== :

< desiredspeed frontdistance >0 fignited] ignited]

> desiredspeed

AccMode ﬂCCOn _—[currentspeed<minSpeed]
— off 4. e \
b 2
e Standby
entry: accelerationratio = 4, minSpeed=2;
emryf i peed=d: , safetyTil
tlmeGa_p |states entry: currentspeed = initialspeed; }
— e 3
== Standby T T
< (deltaX + safetyTimeGap) Resume [currentspeed< minSpeed] [currentspeed>minSpeed]
> (deltaX + safetyTimeGap) Cruise
> safetyTimeGap Follow (ACCActve N
<= safetyTimeGap Stop
‘ReadSensorData . % {ControlSpeed
entry: frontdistance = frontdistance _inj; [currentspeed < desiredspeed && timeGap > safetyTimeGap)

[timeGap > (deltaX + safetyTimeGap) && currentspeed == desiredspeed]

Software Controller & process model variables = :

Resume . ; 3
en:ry: controlAction=Accelerate; 3 lcurrentspeffd < desiredsheed && timeGap > (deltaX + safetyTimeGap))(Cruise
entry = +4; i
R entry: timeGap = currentspeed/frontdistance, [~
Control Process Model variables Hazardous deltaX= 1+ imeGap/d; [currenieg
. ——
actions =
< (deltaX + == desired speed Frontdistance>0 Cruise

Signal
safeTimeGap) a I

"> safeTimeGap <desired speed

| entry:
Esiredspeed && timeGap > safetyTimeGap] J

2

\ [tigheGap > (8euax + safetyTimeGap) && frontdistance > 10]
[timeGap|> safetyTimeGap || frontdistarice > 10]

- [timéGap < (deltaX + safetyTimeGab)]
Cruise No

\ |
[timeGap < (deltaX + safetyTimeGagy&& timeGap ~= 0] /

< safeTimeGap > Desired speed follow Yes (H1,

SSR1)

[timeGap == 0}

gefllspeed =0,
opwsefAction=FullyStop;
oo = -
_ . e

Context Table

Follow A
during: currentspeed = currentspeed -1; [~
_| exit: controlAction=Decelerate;

2
[(timeGap <= safetyTimeGap && Vronlgm'ance <10)]

Transition : (safety requirement)
[currentSpeed == desiredSpeed && timGap> .

(deltaX+safeTimeGap) && ACCMode == Cruise] '{ I Parallel Process variables
_——

Sequential Process variables
20/26

Step 3.1 : Automatically generate Verification Model of SBM

¢ To check whether the safe behavioural model satisfy the STPA safety requirements, we developed a tool called STPA
TCGenerator which automatically converts the safe behavioural model into a input language of model checker such
as SMV (Symbolic Model Verifier) model

v
(4] ACC STOP & GO Simulator Software

Process Model

Data

==0
> minSpeed frontdistance<0

STPA Process Model e —

iAccMode

(static) on

Simulink Stateflow
(dynamic)

Resume
Cruise
Follow
Stop

< (deltaX + safetyTimeGap)
> (deltaX + safetyTimeGap)
> safetyTimeGap

<= safetyTimeGap

o STPA Safety-based Test Cases Generator
3 File Edit
‘@ New | Save

¥ import @ Parse < Generate SMV Q/Verify Build Safe Test Model _.> GenerateTest Cases . Export 4eF Setting °Exit

Stateflow Model ~ STPA Data Model w Safe Test Model (EFMS) Test Cases and Traceability Matrix

--This model is automtically generated by SMVGenerator tool which is developed by Asim Abdulkhaleq, Stefan Wagner

| |-=University of Stuttgart, Institute of Software Technology, Germany

¢ |--Copyright (c) 2016, at Institute of Software Technology, Software Engineering Group-2016
--Date/Time:2016/03/12 12:45:57

MODULE Sub_ControlSpeed(Power,currentspeed,desriedspeedin,timeGap,deltaX,minSpeed,safetyTimeGap,frontdistance,controlAction,initialspeed,accelerationratio,frontdistance_in,Ignitec
esiredspeed)
VAR

states: {Resume ,Cruise ,Follow ,Stop };
ASSIGN

init (states):=Resume;

next (states):=case

TRUE:{Resume};

states=Resume & (currentspeed < desiredspeed & timeGap > safetyTimeGap) : Resume;
states=Cruise & (timeGap > (deltaX + safetyTimeGap) & currentspeed = desiredspeed) : Cruise;
states=Cruise & (currentspeed < desiredspeed & timeGap > (deltaX + safetyTimeGap)) : Resume;

states=Resume & (currentspeed = desiredspeed & timeGap > safetyTimeGap) : Cruise; The ge ne ratEd SMV mOdEI by
states=Follow & (timeGap > (deltaX + safetyTimeGap) & frontdistance > 10) : Resume;
states=Cruise & (timeGap < (deltaX + safetyTimeGap)) : Follow; STPA TCG ene rator tool

states=Stop & (timeGap > safetyTimeGap | frontdistance > 10) : Resume;
states=Resume & (timeGap = 0) : Stop;

states=Resume & (timeCap < (deltaX + safetyTimeGap) & timeGap != 0) : Follow;
states=Follow & ((timeGap <= safetyTimeGap & frontdistance < 10)) : Stop;
TRUE: {Resume ,Cruise ,Follow ,Stop };

esac; 21/26

Step 3.1 : Check Correctness of Safe Behavioural Model of SW Controller

¢ Second, we developed a plug-in based on XSTAMPP called STPA verifier to verify the LTL

formulae with NuSMV model checker tool

XSTAMPP -STPA Project-> ACCSimulator
File Edit Window Help

i [oy (> @& Close STPA Verifier

[Project Explorer [=] [+ Preferences

2 testcast [acc]

¥ Accsimulator [hazx]

u NewACCSimulator [hazx]
2 pcA Pump [hazx]

= 8 || v

Verify v BJ) Select All Deselect All | % Check Syntax X Remove + AddLTL |5y Reset - A
Y! ®
Esd e por = O || 5 SMVModel10104.5mv &2 =
IDs LTL/CTL Formular Status [} 1
rodel L . 11y N d by SMVGer
SSR1.1 G ((states=standby)&(currentspeed... & syntax error! 2 madel 1s autamtically generated by enerator

SSR1.2 G ((states=resume)&(currentspeed..
SSR1.3 G ((states=cruise)&(currentspeed
SSR1.4 G ((states=follow)&(currentspeed>.
SSR1.5 G ((states=stop)&(currentspeed=d...
SSR1.6 G ((states=standby)&(currentspeed.
SSR1.7 G ((states=standby)&(currentspeed...
SSR1.8 G ((states=resume)&(currentspeed...
SSR1.9 G ((states=cruise)&(currentspeed<..
SSR1... G ((states=cruise)&(currentspeed>..
SSR1... G ((states=follow)&(currentspeed=...
SSR1.. G ((states=stop)&(currentspeed=0).
SSR1.. G ((states=stop)&(currentspeed>m..
SSR1.. G ((states=standby)&(currentspeed...
SSR1.. G ((states=follow)&(currentspeed>.
SSR1... G ((states=stop)&(currentspeed>m.

(

(

syntax error!

syntax error!

yntax error!

SSR1.. G ((states=standby)&(currentspeed...
SSR1... G ((states=standby)&(currentspeed...
SSR1... G ((states=resume)&(currentspee
SSR1.. G ((states=resume)&(currentspeed..
SSR1... G ((states=
SSR1.. G ((states=cruise)&(currentspeed
SSR1.. G ((states=cruise)&(currentspeed>..
SSR1.. G
SSR1.. G ((states=cruise)&(currentspeed>..
SSR1... G ((states=follow)&(currentspeed>.
SSR1... G ((states=follow)&(currentspeed>...
SSR1.. G ((states=follow)&(currentspeed>...
SSR1... G ((states=follow)&(currentspeed>.
SSR1... G ((states=stop)&(currentspeed>m...
SSR1.. G ((states=stop)&(currentspeed>m..
SSR1... G ((states=stop)&(currentspeed>d...

esume)&(currentspeed...

states=cruise)&(currentspeed>...

<

& Console| [7] Results | [™] Counterexample
STPA Verifier Console
Time for reordering: 0.00 sec

University of Stuttgart, Institute of Software Technc
Copyright (c) 2016, at Institute of Software Technolc
Date/Time:2016/02/16 17:57:08

init (states):=resume;

next (states):=case

RUE: {resume};

states=resume & (currentspeed < desiredspeed & timeGap
states=cruise & (timeGap > (deltaX + safetyTimeGap) & ¢
states=cruise & (currentspeed < desiredspeed & timeGar
3 states=resume & (currentspeed = desiredspeed & timeGap
states=follow & (timeGap > (deltaX + safetyTimeGap) & 1
states=cruise & (timeGap < (deltaX + safetyTimeGap))
states=stop & (timeGap > safetyTimeGap | frontdistance
states=resume & (timeGap = 0) : stop;

states=resume & (timeGap < (deltaX + safetyTimeGap) & t
states=follow & ((timeGap <= safetyTimeGap & frontdist:
RUE: {resume ,cruise ,follow ,stop };

esac;

MODULE Sub_ACCActive (Power,currentspeed,desriedspeedIn,
VAR

ControlSpeed:Sub_ControlSpeed (Power,currentspeed,desrie

More detailed information about the semantics and values of these parameters
can be found in the documentation about the CU Decision Diagram Package.

Statistics on BDD FSM machine.

BDD nodes representing init set of states: 52

BDD nodes representing state constraints: 1

BDD nodes representing input constraints: 1

Forward Partitioning Schedule BDD cluster size (#nodes):
cluster 1 : size 2100

Backward Partitioning Schedule BDD cluster size (#nodes):
cluster 1 H size 2100

]

~

v

- X
™1 Model Checker = 0
Choose Model
O Promela Model
® SMV Model

Choose | | Check Model

NuSMV Path: | E:\Lukas\Studium\Bachelor\Semester_9\Bi| | Choose Path

Advanced Configuration

Extract Model

B ME-Ci-ja =8

Step 3.2 . Safety-based Test Cases Generating

& To generate safety-based test cases based on STPA results,
» We automatically convert safe behavioural model into extended finite state machine.

> We use EFSM as input to the STPA TCGenerator to generate test cases for each STPA SSR.

@y
— . /STPA TCGenerartor Safety-based Test Cases
SUPH —s) = > . mm)) Safety

I Safe behavioural model EFSM Model

Traceability matrix

Stateflow Model ~ STPA Data Model SMV Model Test Cases and Traceability Matrix
EFSM Model Graph ~ EFSM Truth Table YRV SR
Hierachical Tree of Stateflow [RagiBUCICREE Il EFSM Truth Table
root
xxxxx
(root : ACCOfi(root : ACCOn) .
(start : ACCOff)

ACCOff ACCOn

[

(ACCOn :ACCAc (ACCOn :Standby)

t6=~Ignited
.
t0=Ighited
ACCActive ﬁmnam peed

(ACCActive : Cont (ACCActive ReadSensor| Data)

EIET Log View
STOp->Keadasensorvata STOp->Keaas orvata

en
ReadSensorData->ACCOff ReadSensorData->ACCOff
ReadSensorData->Standby
ReadSensorData->Resume
ReadSensorData->Cruise
ReadSensorData->Follow

ReadSensorData->Standby
ReadSensorData->Resume
ReadSensorData->Cruise
ReadSensorData->Follow
ReadSensorData->Stop
Standby->ACCOff
Standby->Standby
Standby->ReadSensorData32
number of transition in truthtable 32

ReadSensorData->Stop
Standby->ACCOff
Standby->Standby
Standby->ReadSensorData32
number of transition in truthtable 32

Stateflow Tree of SBM Extended finite state machine diagram of SBM

23/26

The Results of Test Cases Generating

¢ We generated automatically 18 test cases which cover the safe behavioural of the ACC software
transition coverage =18/32, and the STPA Safety

controller with the state coverage =7/7,
Requirements coverage 38/38.

| Test Input Data

Traceability Matrix

Suite_ID 4 TestCase_ID
3

= Generated Test Cases
¥ o Test Suite 1
¥ o TestCases 1
» | 7] Pre-Conditions and Actions
» |71 Expected Result
¥ o Test Suite 2
¥ [Test Cases 1
¥ = Pre-Conditions and Actions
currentspeed=29.73
controlAction=Decelerate
*Power=true
*desriedspeedIin=75.93
*initialspeed=72.49
*frontdistance_in=42.47
state=Follow
¥ | Expected Result
currentspeed=72.49
state=Standby
|l Test Cases 2

|] Test Cases 3
|

AV D D D D D W N b e et e e
B W e BN D W e N e e N e D

| Test Cases 4

| 1l Test Cases 5

| Test Suite 3

|
|1 Test Suite 4

vvyYvyy

>
>
b [] Test Suite 5

Transition_ID STPA_SSR_ID
20 13,11,10,8,7,16,15,1...

30 12,9,6,5,4,3,2,1,53,

30 12,9,6,5,4,3,2,1,53,

97 13,6,16,15,4,46,35,3...

24 48,

Pre-Conditions

currentspeed=15.60 *Power=t...
currentspeed=40.61 *Power=t...
currentspeed=69.54 *Power=f...
currentspeed=81.56 *Power=t...
currentspeed=99.83 *Power=f...
controlAction=Accelerate current...
Ignited=true *Power=true *des...
frontdistance=5.85 *Power=tru...
accelerationratio=4.00 minSpee...
frontdistance=58.37 *Power=tr...
frontdistance=23.36 *Power=f...
frontdistance=23.61 *Power=f...
currentspeed=7.89 controlActio...
currentspeed=57.68 controlActi...
currentspeed=58.23 controlActi...
currentspeed=29.73 controlActi...
currentspeed=2.90 controlActio...
controlAction=Accelerate current...

Post-Conditons
currentspeed=15.60 st...

state=ReadSensorData

currentspeed=69.54 st...
currentspeed=81.56 st...
currentspeed=99.83 st...

controlAction=Accelerat...

currentspeed=22.21 st...

controlAction=Accelerat...
state=ReadSensorData

currentspeed=55.41 st...
currentspeed=19.00 c...
currentspeed=0.00 co...
currentspeed=6.89 co...

state=ReadSensorData

currentspeed=57.23 c...
currentspeed=72.49 st...
currentspeed=1.90 co...

controlAction=Accelerat...

STPATCG-> Stop Condition is ALLSTPARequirmentsCoverage

Total no. generated TestSuite=6

Total no. generated Test Cases=18

ALL States coverage=7/7=100.0%

ALL Transitions coverage=18/32=56.25%

ALL STPA Safety Requriements coverage=38/38=100.0%
STPATCG->Excel written successfully..

Time Taken 1 sec, 0 min

Test Steps :20
Test Algorithm : Both (DFS &BFS)

Stop Condition= AlISTPARequriements

24/26

Verifying STPA Safety Requirements at the implementation level

& We use STPA verifier to verify the LTL formulae with SPIN model checker tool based on the

verification model which is extracted directly from C source code of

ACC by Modex tool

XSTAMPP -STPA Project->LegoACCSimulator

[JON |}

i a3 O A Close STPA Verifier (7) v Select All Deselect All Check Syntax Remove Add LTL v v

[Project Explorer = [# Preferences = B [™] LTL/CTL sV mG por = O
» 2 Train to Train Collision Accident [acc] IDs LTL/CTL Formular Status

> 2 dsss [acc) SSR1.1 01 1dby)&&(ti p==... @ validated

» 1 ssaddas [acc) SSR1.2] ime) &&(til ... @ failed with Counterexample
> 1 test3556 [acc) SSR1.3 [] ((states==cruise)&&(timeGap==0... @ validated

> 2 testcast [acc] SSR1.4 [] follow)&&(ti 0... @ validated

> BACC STPA [hazx] SSR1.5 [] ((states==stop)&&(timeGap==0)... @ validated

» 3 Acc STPA XML thazxl SSR1.6 [1) &&(ti ... @ validated

> cAccsimulator [hazx] SSR1.7] 1dby) &&(ti (... @ failed with Counterexample
> BACCSimulaton [hazx] SSR1.8 [] ((states==resume)&&(timeGap<(... @ failed with Counterexample
> BAcc,srop,eo,ww [hazx] 0 t uise) &&(ti 0.. @ validated

>cAircomrouer [hazx] . [((states==cruise)&&(timeGap<(de... @ validated

» [cNuAS HPCI STPA [hazx)
» 3 s7PA Anticolision FPSO recovery4 [hazx]
> B STPA_ACC [hazx]

> c STPA_ACC-2 [hazx]

» [sTpA_Continental thazx]
» 3 restvodel thazx1

» B rain thazx

> Bsss thaza

> c«asm [hazx]

> e test25 [hazx]

> 3 test30 (hazx)

> B testa2 (hazx)

> 3 test3s (hazx)

> e test362 [hazx]

> c test38 [hazx]

» 3 testsTPA (hazx)

> c testrules [hazx]

> c xst [hazx]

SSR1....

~ena

LSS LSS S S SN LS TSNS LSS H NSNS NS N R SN A< K< X< T4

&) console

SSR
SSR1.1
SSR1.2
SSR1.3
SSR1.4
SSR1.5
SSR1.6
SSR1.7
SSR1.8
SSR1.9
SSR1.10
SSR1.11
SSR1.12
SSR1.13
SSR1.14
SSR1.15

. [1 ((states=
. [] ((states==stop)&&(timeGap==0)...
. [((states==stop)&&(timeGap<(delt...
. |0 V)&t (=
- [1 ((state:
. [1 ((states==stop)&&(timeGap<(delt..
.0 1dby)&&(ti (..

. [1 ((states=
. [1 ((state:
- [((state:
. [1 ((states==follow)&&(timeGap<(de
. [1 ((states==stop)&&(timeGap<(delt...

. failed with Counterexample
. failed with Counterexample
@ failed with Counterexample
@ \alidated

@ failed with Counterexample
. failed with Counterexample
@ \alidated

. validated

@ failed with Counterexample
@ failed with Counterexample

ollow)&&(timeGap«<(de...

follow)&&(timeGap<(de

0 y)&&(t (.
(] ((states==resume)&&(timeGap«(...
[] ((states==resume)&&(timeGap«(...

. [1 ((states==resume)&&(timeGap<(... . validated
. [((states==cruise)&&(timeGap<(de... § validated
. [((states==cruise)&&(timeGap<(de... @ validated
. [] ((states==cruise)&&(timeGap<(de... .vahdatcd
. [1 ((states==cruise)&&(timeGap<(de... . validated

. failed with Counterexample
. failed with Counterexample
@ validated
. validated
@ failed with Counterexample
. failed with Counterexample

ollow)&&(timeGap<(de.
ollow)&&(timeGap<(de.
ollow)&&(timeGap<(de.

[] ((states==stop)&&(timeGap<(delt.

[] ((states==stop)&&(timeGap<(delt.. . validated
[] ((states==standby)&&(timeGap>(... @ validated
1]) &&(tit (.. @ validated
LY YR S P T SO S

[™ Results | [™] Counterexample

#Depth #StoredStates #Transitions
4999.0 2217.0 2218.0
3504.0 1549.0 1549.0
4999.0 2217.0 2218.0
4999.0 2217.0 2218.0
4999.0 2217.0 2218.0
4999.0 2217.0 2218.0
194.0 86.0 86.0
1034.0 458.0 458.0
4999.0 2217.0 2218.0
4999.0 2217.0 2218.0
1126.0 498.0 498.0
3340.0 1476.0 1476.0
4642.0 2058.0 2058.0
4999.0 2217.0 2218.0
330.0 148.0 148.0

= ACCSimulator.pml £3 = ™ Model Checker = 8

// Generated by MODEX Version 2.8 - 20 February 2015

hoose Model
// Thu Feb 25 16:32:05 CET 2016 from ACCSimulator.c Choose Mode|

#define accoff (1) © Promela Model
#define standby (2) SMV Model
#define resume (3)
#def}ne cruise (4) /UserslasimabduIkhaleq/Documents/xs(amppworkspace/ACCSimula(n
#define follow (5)
#define stop (6) Choose Check Model
#define accelerate (1)
#define decelerate (2)
#define fullystop (3) Spin Path: jusr/local/Spin/Src6.4.4/spin Choose Path
#define keepspeed (4)
#define unknown (5)
CPath: Jusr/bin/gcc Choose Path

c_state "long res_p_main" "Global"

bool Ick_p_main_ret;

bool Ick_p_main;

c_state "long res_p_GetSonarRawValue" "Global"
bool Ilck_p_GetSonarRawValue_ret;

bool Ick_p_GetSonarRawValue;

c_state "long res_p_goMove" "Global"
bool Ick_p_goMove_ret;

bool Ick_p_goMove;

c_state "long res_p_decelerate" "Global"
bool Ick_p_decelerate_ret;

bool Ick_p_decelerate;

c_state "long res_p_accelerate" "Global"
bool Ick_p_accelerate_ret;

bool Ick_p_accelerate;

c_state "long res_p_calcTimeGap" "Global"
bool Ick_p_calcTimeGap_ret;

bool Ick_p_calcTimeGap;

c_state "double par@_calPID" "Global"
c_state "long res_p_calPID" "Global"
bool Ilck_p_calPID_ret;

bool Ick_p_calPID;

int r;

c_state "double kd " "Global" "0.1"

Limit for state space: 1520

Limit for memory allocation: 1024

Optimize for Safety Properties
Disable x[rs] assertions

Use state space compression

Memory (in bytes) used for state vector: 2048

Maximum search depth: 5000

Advanced Configuration

Extract Model

c_state "double ki Global" "0.1"
]

#Time #Memory usage (MB) Result
0.23 16.519 satisfied
0.09 12.418 fails
0.23 16.519 satisfied
0.23 16.519 satisfied
0.22 16.519 satisfied
0.23 16.519 satisfied
0.01 4.41 fails
0.02 6.754 fails
0.24 16.519 satisfied
0.24 16.519 satisfied
0.05 7.144 fails
0.08 12.027 fails
0.11 15.347 fails
0.23 16.519 satisfied
0.01 4.8 fails

Check = &

Conclusion & Future Work

¢ Conclusion:

> We presented a safety engineering approach based on STPA to develop a safe
software. It can be integrated into a software development process or applied
directly on existing software.

> It allows the software and safety engineers to work together during development
process of software for safety-critical systems.

> We conducted a case study to evaluate STPA Swiss during developing a simulator of
ACC with LEGO-mindstorm roboter at our institute.

¢ Future (recent) Work:

> We conducted a case study with our industrial partner to investigate the
effectiveness of applying the STPA Swiss approach to a real system.

> We plan to position the STPA Swiss approach into an automotive development
process of our industrial partner.

Joint Work with:
Prof. Dr. Stefan Wagner

Thank you!

Asim Abdulkhaleq, M.Sc.

e-mail Asim.Abdulkhaleq@informatik.uni-stuttgart.de
phone +49(0)711685- ggysg
fax +49(0) 711 685- 88389

Universitat Stuttgart

Institute of Software Technology

www.xstampp.de

