
STPA	Swiss

A	Comprehensive	Safety	Engineering	Approach	for	
Software	Intensive	Systems	based	on	STPA

Asim
Abdulkhaleq

Stockholm,	 17th March	2016

4th	Scandinavian	Conference	on	System	&	Software	Safety			

Motivation: Software of Today’s Complex Systems
u Today’s	 safety	critical	 systems	are	increasingly	 reliant	on	software.	

Ø Software	is	the	most	complex	part	of	modern	safety	critical	embedded	 systems.

Ø E.g.	A	modern	car	has	something	 close	100	million	 lines	 of	software	code	 in	it,	
running	on	70	to	100	microprocessors.	

Anti-Lock	Braking	Systems	(ABS)

Electronic	Stability	Control

Adaptive	Cruise	Control (ACC)

Stop	&	Go	Adaptive	Cruise	Control

Traction	Control
Back	Camera

Tire	Pressure	Monitoring

Reverse	Backup	Sensors

Automatic	Braking	Systems

Electronic	Brakeforce Distribution	Systems

Automatic	Braking	Systems

2/26

 How	to	recognize	the	software	risks	in	modern	systems	and	
reduce	them	to	a	low	level?

Vehicle	

Agenda

v Motivation

v Problem	Statement	&	Research	Objectives	

v Background		

- Safety	Analysis	Techniques	

- STAMP	and	STPA	Approach			

v STPA	Swiss	Approach	

v XSTAMPP:	Tool	support	for	STPA	Swiss	Approach	

v Illustrative	Example:	Adaptive	Cruise	Control	System

v Conclusion	&	Future	Work

3/26

u Safety	is	a	system	property	and	needs	to	be	analysed in	a	system	context.	

Ø Therefore,	software	safety	must	be	considered	 in	the	context	of	the	system	level	to	
ensure	the	whole	system’s	safety.	

Software Safety Challenges

System

Software
Input	
Devices

Output	
Devices

Monitored
Variables

Input	Data	
Items	

Output Data
Items

Controlled	
Variables

Software	Critical	Variables

4/26

Verify	the	software	
against	 its	safety	
requirements	 	

Identify	appropriate	
software	safety	
requirements	

Ø Safety	Analysis	Techniques:
• FTA,	FMEA,	STPA	

Ø Software	Verification	approaches:	
• Model	checking	(SMV,	SPIN,	.etc.)
• Testing	approaches	

Functional	correctness	of	software,	
however,	even	perfectly	correct	software	
can	contribute	in	an	accident.	
Not	directly	concern	safety	
Test	all	software	behaviours	is	impossible	

FTA	and	FMEA	have	limitations	to	
cope	with	complex	systems.			STPA	
is	developed	to	cope	with	complex	
systems,	but	its	subject	is	system	
not	software.

Research Objectives & Contribution
u Research	Objectives	

Ø Integrate	STPA	safety	activities	 in	a	software	engineering	 process	to	allow	safety	and	
software	engineers	 a	seamless	 safety	analysis	and	verification.	

Ø This	will	help	them	to	derive	software	safety	requirements,	 verify	them,	generate	
safety-based	test	case	and	execute	 them	to	recognize	the	associated	 software	risks.

5/26

u Contribution	 	

• We contribute a safety engineering approach to

Ø derive software safety requirements at the system level

Ø transform them safety into formal specification in LTL/CTL

Ø verify them at the design and implementation levels and

Ø generate test cases from the information derived during STPA safety analysis.

• We develop a tool support called XSTAMPP to automate the proposed
approach.

6/26

Background: Safety Analysis Techniques
u There	are	over	100	different	 safety	analysis	techniques.	

u There	are	some	 limitations	with	traditional	 safety	analysis	 techniques:

q They assume that accidents are caused by component failures.

q They are not adequate to address new accidents caused by component
interactions, human errors, management and organizational errors and software
errors [Leveson 2011].

7/26

Systems Approach to Safety Engineering(STAMP)
STAMP (Systems-Theoretic Accident Model and Processes)
is an accident causality model based on systems theory and systems
thinking

u Accidents	are	more	than	a	chain	of	events,	they	involve	
complex	dynamic processes.	

u Treat	accidents	as	a	control	problem,	 not	a	failure	problem.	

u Prevent	accidents	by	enforcing	constraints	 on	component	
behaviour and	interactions.	

u Captures	more	causes	of	accidents:

― Component	failure	accidents

― Unsafe	interactions	among	components

― Complex	human,	software	behaviour

― Design	errors

― Flawed	requirements	

esp.	software-related	accidents.	

STAMP	Model

Leveson (2003);	Leveson (2011)

STPA Safety Analysis Technique
u STPA	(System-Theoretic	 Process	Analysis)

q Developed	 by	Prof.	Leveson at		MIT,	USA,	2004

q Built	on	STAMP	model	 	based	on	system	and	control	theory	rather	than	reliability.

q Treats	safety	as	dynamic	control	problem	rather	than	failure	problem	

Human/	Automated
Controller

Actuators Sensors

Controlled Process

Controlled
Variables

Measured
Variables

Process OutputsProcess Inputs

Disturbances

Feedback
Variables

Controlled
Variables

A	generic	control	loop	of	system			
8/26

Monitored
Variables

Processes
Model

Controller
Control	

Algorithm

Feedback	
Variables	Starting	

Point	

STPA Approach Process

9/26

Start	

Define	Analysis	
Scope

Develop	
Hierarchical	

Control	Structure	

Hierarchical	Control	
Structure	

STPA	Step1:	
Identify	Unsafe	
Control	Actions		

STPA	Step2:	Identify	
How	each	unsafe	

Control	Action	could	
occur			 Hierarchical	Control	Structure	

with	process	model		

System-Level	Accidents,	
related	hazards,	design	and	

safety	requirements	

Unsafe	Control	
Actions	

Corresponding	Safety	
Requirements	

Unsafe	Scenarios	

Safety	Analysis	
Report	

Fundamentals	

System	Specification	
and	design	models	

Refined	Safety	Requirements	

Input	 Results	

STPA Swiss: A Software Safety Engineering Approach

10/26

u Major issues of using STPA in software development process:
u STPA is performed separately and has not been yet placed in software engineering process.

u The STPA-generated software safety requirements are written in natural language, which we
can not directly use them in the verification and testing activities.

u Identify the unsafe scenarios of complex software based on the combinations of process model
variable values manually is time and effort consuming.

u STPA does not provide any kind of model to visualize the relationship between the critical
process variables of controller which have an affect of the safety of control actions.

STPA	Swiss	Safety	Engineering	Process

build

Detailed View of the STPA Swiss Approach

11/26

u The	proposed	approach	can	be	applied	during	developing	 a	new	safe	software	
or	on	existing	software	of	safety-critical	 system	

Apply to software
at the system level

Safety Control
Structure Diagram

STPA Safety Analysis

Unsafe Software
Scenarios

Software Safety
Requirements

System Requirement
Specifications

System Design
Models

Software Implementation
(code)

Build Safe Software
Behavioural Model

Formal Verification
(model checker)

Testing approach

State flow model
(Simulink)

Safety-based Test
Case Generation

Generate and
Execute Test-scripts

generate

generate test suites

Formalize

generate

Traceability Execute

*Extract the verification
model directly from the

software code

STPA results

Software Safety Verification

1

23

4

5

Safety Verification
Report

Formal
Specifications

Automated STPA Swiss Approach: XSTAMP Platform

12/26

u We	developed	 an	extensible	 platform	tool	support	 for	STAMP	safety	engineering	
called	XSTAMPP as	open	source	platform.		

www.XSTAMPP.de
The XSTAMPP main window

Example: Applying STPA to ACC Simulator

13/26

How	to	derive	the	safety	requirements	of	
ACC	software	controller	at	the	system	level	
and	generate	the	safety-based	test	cases?

u Fundamentals of Analysis

u System-Level Accidents:

Ø ACC-1 : ACC vehicle crashes with a vehicle in front.

u System-Level Hazards

Ø H-1: ACC software controller does not maintain safe distance from front vehicle.

Ø H-2: The ACC software does not stop the vehicle when the front vehicle is fully stopped

u Adaptive Cruise Control System: is a well-known automotive system which has
strong safety requirements. ACC adapts the vehicle’s speed to traffic environment based
on a long range forward-radar sensor which is attached to the front of vehicle.

http://www.iste.uni-stuttgart.de/en/se/forschung/werkzeuge/acc-simulator.html

Step1.a : Construct The Control Structure Diagram

14/26

ACC

Design and	Safety	Requirements	of	System

SSR0.1 The	ACC	simulator	should	keep	a	safe	distance	 between	 the	vehicle	 and	a	
vehicle	ahead

SSR0.2 The	ACC	simulator	should	stop	the	vehicle	when	there	 is		a	stopped	vehicle	 in	
the	front.	

u Control	Structure	 diagram	shows	the	main	interconnecting	components	of	the	
ACC	system	at	a	high	level.

Step1.b : Identify Unsafe Control Actions

15/26

ACC

u Unsafe	Control	Actions	 	

Each unsafe	control	action is	then translated into	a	system-level safety	constraint

Example:	 The	corresponding	safety	constraint	of	UCA1.1	is	

SR1.1	The	ACC	software	should bring	the	robot	to	fully	stop	at	standstill	when	the	
robot	vehicle	ahead	is	fully	stopped.

Step 1.b: Understand how each UCA could occur

16/26

u Process	model	shows	the	critical	variables	which	have	an	effect	 on	safety	of	the	
control	actions. ACC

Four types of process model
variables:
(1) Internal states variables
(2) Internal variables
(3) Interaction variables
(4) Environmental variables

u Based	on	the	concept	of	context	tables	of	each	safety-critical	 actions	(John	Thomas	
2013),	we	generate	 the	combination	sets	between	 process	model	values	

Step1 : Automatically Generating Context Tables

17/26

u Apply the combinatorial testing algorithm to reduce the number of
combination between the process model variables (Cooperation with Rick Kuhn,
National Institute of Standards and Technology, Computer Security Division, US).

ACC

q By	combinatorial	 testing	algorithm:	 	
q We	can	automatically	 generate	the	context	table.	

q We	can	achieve	different	combination	coverages	(e.g.	pairwise	coverage,	
combinations	and	t-way	coverage)

q We	can	apply	different	roles	and	constraints	to	the	combination	to	ignore	some	
values	

Control	Actions timeGap states currentspeed RadarSensorData Hazardous

Decelerate	

Standby ==	0 >	minSpeed Frontdistance>0 no
Follow <	(deltaX +	safetyTimeGap) ==desiredspeed Frontdistance>0 yes
Standby >	(deltaX +	safetyTimeGap) <	desiredspeed Frontdistance>0 no
Standby >	safetyTimeGap >	desiredspeed Frontdistance>0 no
Standby <=	safetyTimeGap ==0 Frontdistance>0 no
Resume ==	0 ==desiredspeed Frontdistance>0 no
Resume <	(deltaX +	safetyTimeGap) <	desiredspeed Frontdistance>0 yes
Resume >	(deltaX +	safetyTimeGap) >	desiredspeed Frontdistance>0 no
Resume >	safetyTimeGap ==0 Frontdistance>0 no
Resume <=	safetyTimeGap >	minSpeed Frontdistance>0 no
Stop ==	0 ==0 Frontdistance>0 no
Stop <	(deltaX +	safetyTimeGap) >	minSpeed Frontdistance>0 no
Stop <=	safetyTimeGap >	desiredspeed Frontdistance>0 no

Context	Table	of	control	action	Decelerate	in	context	not	provided

Automatically Generate LTL formulae

18/26

u ACC	software	controller	provides	 a	safety	critical	action:	accelerate	signal	

Control	
actions

Process	Model	variables	 Hazardous

Accelerate	
Signal

timeGap CurrentSpeed RadarData states

<	(deltaX +	
safeTimeGap)

==	desired	speed	 Frontdistance>0 Cruise	 Yes

>	safeTimeGap <desired	speed Frontdistance>0 Cruise	 No

<	safeTimeGap >	Desired	speed Frontdistance>0 follow Yes (H1,	
SSR1)

Refine	the	software	safety	Requirements	

𝑆𝑆𝑅#.%:	ACC	should	not	provide	accelerated	 signal	when	the	TimGap is	less	or	
equal	the	safeTimeGap while	ACC	in	follow	mode	current	speed	 is	greater	than	
desired	speed.

Generate	LTL	formula	

𝐿𝑇𝐿#.% G ((states=follow)&(timeGap<safeTimeGap)&(currentspeed>DesiredSpeed)&
frontdistance >0)->! ((controlAction=Accelerate)))

Step 2 : Constructing the safe behavioural model of software controller

19/26

Software	safety	requirements	

Context	tables	

u To	verify	the	design	&	implementation	 of	software	controller	against	 the	
STPA	results	and	generate	the	safety-based	 test	cases:

Ø Each	software	controller	must	be	modelled	in	a	suitable	behavioural	model	

Ø The	model	should	be	constrained	by	STPA	safety	requirements

Control	structure	&	process	model

A	safe	behavioural model	of	software	controller	
Software	Specification	

UML	state	flow	notation

Ø Syntax	of	each	transition	of	the	safe	behaiovural model:																																																																																																								

STPA	Results

State	0
[STPA	safety	requirement]		

State	1

Step 2 : The safe behavioural model of ACC software controller

20/26

Software	Controller	&	process	model	variables

[currentSpeed ==	desiredSpeed &&	timGap>	
(deltaX+safeTimeGap)	 &&	ACCMode ==	Cruise]

Transition	:	(safety	requirement)

A	safe	behavioural	model	of	ACC	software	Controller

Sequential	Process	variables

Parallel	Process	variables

Context	Table

Step 3.1 : Automatically generate Verification Model of SBM

21/26

u To check whether the safe behavioural model satisfy the STPA safety requirements, we developed a tool called STPA
TCGenerator which automatically converts the safe behavioural model into a input language of model checker such
as SMV (SymbolicModel Verifier) model

Simulink	Stateflow
(dynamic)	

STPA	Process	Model
(static)

The	generated	SMV	model	by	
STPA	TCGeneratortool

Step 3.1 : Check Correctness of Safe Behavioural Model of SW Controller

22/26

u Second,	we	developed	a	plug-in	based	on	XSTAMPP	called	STPA	verifier	to	verify	the	LTL	
formulae	with	NuSMV model	checker	tool	

Step 3.2 : Safety-based Test Cases Generating

23/26

u To	generate	safety-based	 test	cases	based	on	STPA	results,	

Ø We	automatically	 convert	safe	behavioural	model	 into	extended	 finite	 state	machine.

Ø We	use	EFSM	as	input	to	the	STPA	TCGenerator to	generate	test	cases	for	each	STPA	SSR.	

Safety-based	Test	Cases	STPA	TCGenerartor
Tool

Safe	behavioural	model		 Traceability	matrix
EFSM	Model

Stateflow Tree	of	SBM Extended	finite	state	machine	diagram	of	SBM

The Results of Test Cases Generating

24/26

u We generated automatically 18 test cases which cover the safe behavioural of the ACC software
controller with the state coverage =7/7, transition coverage =18/32, and the STPA Safety
Requirements coverage 38/38.

Test	Steps :20	
Test	Algorithm	:	Both	(DFS	&BFS)
Stop	Condition=	AllSTPARequriements

Verifying STPA Safety Requirements at the implementation level

25/26

u We	use		STPA	verifier	to	verify	the	LTL	formulae	with	SPIN	model	checker	tool	based	on	the	
verification	model	which	is	extracted	directly	from	C	source	code	of	ACC	by	Modex tool		

Conclusion & Future Work

u Conclusion:
Ø We presented a safety engineering approach based on STPA to develop a safe

software. It can be integrated into a software development process or applied
directly on existing software.

Ø It allows the software and safety engineers to work together during development
process of software for safety-critical systems.

Ø We conducted a case study to evaluate STPA Swiss during developing a simulator of
ACC with LEGO-mindstorm roboter at our institute.

u Future (recent) Work:

Ø We conducted a case study with our industrial partner to investigate the
effectiveness of applying the STPA Swiss approach to a real system.

Ø We plan to position the STPA Swiss approach into an automotive development
process of our industrial partner.

26/26

e-mail
phone	 +49	(0)	711	685-

fax	 +49	(0)	711	685-

Universität	Stuttgart

Thank	you!

Asim	Abdulkhaleq,	M.Sc.

88	458
88	389

Institute	of Software	Technology

Asim.Abdulkhaleq@informatik.uni-stuttgart.de

www.xstampp.de

Joint Work with:
Prof. Dr. Stefan Wagner

