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Prolegomenon: Random Software Errors

Most of the safety standards assume:

that hardware errors can be random.

that all software errors are systematic.

(Mechanical) hardware errors appear to be random because we
don’t know the states of all the molecules and don’t have the
processing power to deduce the outcome.
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Prolegomenon: Random Software Errors

Most of the safety standards assume:

that hardware errors can be random.

that all software errors are systematic.

(Mechanical) hardware errors appear to be random because we
don’t know the states of all the molecules and don’t have the
processing power to deduce the outcome.

An OS has many more states than there are nucleons in the universe.

I have a 33 line C program that fails roughly every 300,000,000
times it is run. It does not use (pseudo-)random numbers. How
does this differ from hardware failure?
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The Problems

1 The increasing frequency of random hardware and software

errors

2 The increasing complexity of the two aspects of system design

Probleme kann man niemals mit derselben Denkweise lösen, 

durch die sie entstanden sind.

Albert Einstein
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The First Problem

The increasing frequency of random hardware and software errors

Modern processors come with 20+ pages of errata: “Sometimes
instructions are executed out of sequence. Work-around: None.”
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The First Problem

The increasing frequency of random hardware and software errors

Modern processors come with 20+ pages of errata: “Sometimes
instructions are executed out of sequence. Work-around: None.”

Cosmic rays, cross-talk and EMI cause bit, byte, word, row and
column flips. These errors affect DRAM, cache, registers, etc.
STOP PRESS: Last Thursday researchers at the Vrĳe Universiteit,
Amsterdam, shewed how to use row-hammering from Javascript in
a browser to hack a smart ’phone.

Multi-threaded applications (on multi-core processors) produce
random software errors.
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The First Problem (cont)

According to “DRAM

Errors in the Wild”

we can expect 25,000
to 70,000 bit-flips per
109 hours per Mibit.

Image credit: A. Chantelauze / S. Staffi / L. Bret / Pierre Auger Observatory.

In an embedded system with 2 Gibytes RAM, a bit error can be
expected every hour or so. We can’t bring the system into its
Design Safe State that often.

“All software running on a modern microprocessor is
non-deterministic” (Rob Ashmore, SCSS’17, Bristol, February 2017)
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The Second Problem

The increasing complexity of the two aspects of system design

1 The calculation of the safety-critical values.
“Given our speed, the wet road, the slight incline, the distance to the

car in front, etc., we should apply a brake force of 450.3 Newtons”

2 The availability/reliability balance of the system.
“We are travelling on the highway: availability is more important

than reliability: 1oo3 configuration”

We need to decouple these two aspects of the system.
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The increasing complexity of the two aspects of system design

1 The calculation of the safety-critical values.
“Given our speed, the wet road, the slight incline, the distance to the

car in front, etc., we should apply a brake force of 450.3 Newtons”

2 The availability/reliability balance of the system.
“We are travelling on the highway: availability is more important

than reliability: 1oo3 configuration”

We need to decouple these two aspects of the system.

Requires mathematical expertise

Requires statistical expertise
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The Second Problem (cont)

Conflating these two problems leads to over-complex, sub-optimal
and inflexible implementations.

Making them independent solves these problems and makes
verification (including testing) much more effective.
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The Changing Question — 1 of 2

Has a random hardware error occurred?
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The Changing Question — 1 of 2

Has a random hardware error occurred?

They occur too often and their effect
cannot be predicted, especially in an
accidental system.

Today’s important question:

Has something happened that has
negatively affected the safety of our
system?

So can we ignore hardware errors?
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The Changing Question — 2 of 2

How can we build the required
dependability into this application?
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The Changing Question — 2 of 2

How can we build the required
dependability into this application?

The dependability is independent of the
application.

Today’s important question:

How can we separate the design of
application from the design of the
system dependability so that we can
tune one without affecting the other?
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Hardware Lock-Step: an inadequate solution

The number of replicas is defined by the hardware and cannot
be changed: the system cannot be tuned to local conditions.
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Hardware Lock-Step: an inadequate solution

The number of replicas is defined by the hardware and cannot
be changed: the system cannot be tuned to local conditions.

It is impossible to design the system around diverse

implementations.

Hardware Lock-Step generally supports only replicas.

Without diversification it is impossible to implement the
monitor pattern (“Safety Bag”).
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Hardware Lock-Step: an inadequate solution

The number of replicas is defined by the hardware and cannot
be changed: the system cannot be tuned to local conditions.

It is impossible to design the system around diverse

implementations.

Hardware lock-step does not defend against software errors
(“Heisenbugs”).

If one replica hits a Heisenbug, then all replicas hit it at the
same time.
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Reference Architectures
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The Road Towards a Solution?

We would like to detect and handle errors, whether software or
hardware, that affect the safety of our system.

Since the early 1990s, the data storage
industry has been using “Virtual Synchrony”
to solve similar mission-critical problems.

Does Virtual Synchrony also work in the
embedded world?
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How does Virtual Synchrony Appear?

Ken Birman (1987):

In a virtually synchronous environment, routines . . . will

behave as if distributed actions were performed

instantaneously and in lock-step. . . . It will appear to any

observer – any process using the system – that all

processes observed the same events in the same order.

I.e., Virtual Synchrony, when viewed by an external observer,
appears to provide lock-step operation.

But this virtual lock-step does not suffer from the disadvantages
listed above for hardware lock-step.

QNX calls this “Loosely-Coupled Lock-Step” (LCLS) operation.
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System-Tuning
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Dynamic LCLS

On the Motorway In the Town Centre
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LCLS Implementation

Goals:

As few changes to the application as possible.

Static or dynamic changes to the balance between availability
and reliability.

Independence of the server and dependability implementations.
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LCLS Implementation

Goals:

As few changes to the application as possible.

Static or dynamic changes to the balance between availability
and reliability.

Independence of the server and dependability implementations.

The number of instances of the Server can be selected dynamically.
Because the lock-step is only virtual, it is extremely unlikely that a
random error will hit two or more instances simultaneously.
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LCLS: Configuration 1 (of many)
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An Automotive Configuration
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Summary

All software is subject to random hardware and software errors.

The most important question is not whether such errors have
occurred, but whether they have affected the safety of our system.

The LCLS architecture, based on proven Virtual Synchrony
algorithms, addresses this important question.

Because LCLS only provides “virtual” synchrony, it can defend
against both hardware and software errors.

LCLS cleanly divides the two areas of expertise required to build a
safe embedded system: the mathematical functionality and the
statistical balance of availability and reliability.
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Many Thanks

Chris Hobbs
QNX Software Systems
chobbs@qnx.com


