e

GOTEBORGS
UNIVERSITET

l Automotive
Software
Architectures

A Introduction

B speinger

MACHINE LEARNING
IN AUTOMOTIVE SOFTWARE DEVELOPMENT

OPPORTUNITIES AND CHALLENGES

Softare
Development

MIROSLAW STARON Measurement
Programs

SOFTWARE CENTER, el e Mo

SOFTWARE ENGINEERING

COMPUTER SCIENCE AND ENGINEERING

CHALMERS | GOTEBORGS UNIVERSITET

Machine learning in the development of automotive
software

» The concept of machine learning in software engineering

» Examples of code classification and defect clustering

» The future of applying machine learning to automotive software

l Automotive
Software
Architectures

D sprioee

6/5/2018

GOTEBORGS

UNIVERSITET

- B - s S |

5‘3‘.5’5.5"55’
b bb6ECé b

This is number 5 - 60 % probability that this is number 5
- 30 % probability that this is number 3
10 % probability that this is number 1

] f—
Software
Authitectuses

Automation vs machine learning

Automation Machine learning
» Development: programming (e.g. C++) » Development: teaching (e.g. providing
« Validation: testing examples)
— According to spec or not Validation: statistics

— % of correctly classified instances
— % of consistency

6/5/2018

e

GOTEBORGS
UNIVERSITET

MACHINE LEARNING IN AUTOMOTIVE SE

EXAMPLE 1: FINDING CODING VIOLATIONS (E.G. MISRA)

WORK DONE TOGETHER WITH DR. MIROSLAW OCHODEK, CHALMERS | UNIVERSITY OF GOTHENBURG & POZNAN UNIVERSITY OF TECHNOLOGY

Problem formulation

» Motivating example
— Imagine we need to find MISRA violations
— AND we do not know the grammar of the programming language
— NEITHER we know exactly how to find the patterns manually
— BUT we can provide an example of violations

* Example MISRA rules
— Rule 2.2 (required): Source code shall only use /* ... */ style comments.
— Rule 2.3 (required): The character sequence /* shall not be used within a comment.

+ Standard solution
— MISRA C compliance checker (specific program)

6/5/2018

6/5/2018

brackets <= 0 AND

freq override <= 0 AND
cs_case = false AND
class = false AND = .
freq colon <= 0 AND SeTei
length <= 3: Ignore (979.0/2.0)

1. Mark example code where 2. Let ML discover the 3. Let ML apply this pattern
rules are violated pattern on the whole code base

[ackage orp.eclipse. jface. vetion;

irport q¥t . comnand
irport \ipge. 1 1ace. util. 1Proper istener;
rt org.eclipse. jface.util.PropertyChangeEvent;

#Characters @D “r Decision
o il at 50 1 4 0 Count
i » 13 0 1 1 Ignore

Comment

onality

extends inplesents IAction {
BUTIE VoI o Tstener(7inat Tstener Uistener) T
addl Listener);]

Each line is "encoded” into a format which a ML algorithm can
e s understand

o
Frotecied Tinal vold TirePrapertyChang
final Obfect(] List = getlistenars();
< Ust. lengen; ++1) {
) Ustlil).prope

Pattern discovery — which lines violate the rule

“n

#Characters
50

“.n
’

4

comment .. Decision

0 Count

freq semi colon > 0 AND

13 0 1

1 Ignore

comment = false: Count (534.0/3.0)

brackets <= 0 AND

. 4

ML classification

algorithm

ML algorithm finds patterns of which lines violate the rules

»

freq override <= 0 AND
cs_case = false AND
class = false AND

freq colon <= 0 AND

length <= 3: Ignore (979.0/2.0)

comment = true: Ignore (517.0/5.0)
Count (372.0)
Number of Rules : 4

—

Finding code violations in the entire code base

freq semi_colon > 0 AND
comment = false: Count

brackets <= 0 AND
freqg override <= 0 AND
cs_case = false AND
class = false AND

freqg colon <= 0 AND
length <= 3: Ignore

(979.0/2.0)

(534.0/3.0)

[S—-—

+ @param propertybame
. the nam
* éparan oldValue

+ gparam newvalue

+ Notifies any property change Listeners that a property has changed. Only
+ Listeners registered at the time this method is called are notified. This
» method avoids creating an event object if there are no listeners

* registered, but

+ <code>firePropertyChange (PropertyChangeEvent)</code> if there are.

ealls

e of the property that has changed
the old value of the property, or <codesnull</codes if none

the new value of the property, or <code>null</code> if none

» @see org.eclipse. jface.util. IPropertyChangel istenerapropertyChange(PropertyChangeEvent)
/.

SRR EEY

protected final void firePropertyChange(final String
falue!

propertyNare,
final Object oldValue, final Object newValue) {
if UisListenerattached()) {

tirePropertyChange(new PropertyChangeEvent(this, propertyNase,

comment = true: Ignore (517.0/5.0) : ldvalue, nevalue))
}
pustTe Ve - —
Count (372.0) RPN i
T)
Number of Rules : 4 -

104

6/5/2018

GOTEBORGS
UNIVERSITET

PRACTICE:

FINDING CODING VIOLATIONS IN INDUSTRIAL CODE

Analysis: one declaration per line

* Rule: Only one variable declaration per line of code

Good example: uint32 t * foo;
uint32_t bar;

Bad example: uint3Z_t* foo, bar;
* Method

— Use this example to teach ML -> analyze one component
— Take false-positives -> add to teaching set -> repeat

« Exit criteria: fewer false-positives than true positives

6/5/2018

i % true positives for each training set
3 (size)
70% =
" 60%
£ so%
Results 2 o
o 30%
.‘.=- 20% - @ % true positives
. . ® *
The size of the training set 10%
(example) is one of two major 0%
.. 0 50 100 150 200 250 300
factors determining accuracy. 4
of examples
The other factor is the algorithm
(not shown in the diagram) % true positives
70%
60%
50%
The first trials did not find anything 40%
30% m % true positives
Trial #5 resulted in finding 20%
- all violations 10% |
- one false-positive (non-violation) 0% |

| fatomotive
Seftware
Authitectuses

Practical implications
* Analyzing 3 MLOC takes ca. 20 minutes

* One needs to run 1-5 trials to find the right learning set
— We can automate that process too

* Since this is based on simple scripts, we can build this as part of tool chains

6/5/2018

 Aatortve
Softuare
Auchitectuses

MACHINE LEARNING IN AUTOMOTIVE SE

EXAMPLE 2: WHICH DEFECT SHOULD WE FIX FIRST?

WORK DONE TOGETHER WITH DR. MIROSLAW OCHODEK, CHALMERS | UNIVERSITY OF GOTHENBURG & POZNAN UNIVERSITY OF TECHNOLOGY

 Aatortve
Softuare
Authitectuses

Reported by tesfing

i
i
i
I
I
i
i
i
I
i
i
. i
E;p’éﬁed by testing Reported by customer i
i

| .
i
i
i
i
'
i
i
i
i
I
i
i
i
i
i
i
I
I
i
'

Unit Tsﬁng In?egraliolﬁ testing O IntegrcﬁT testing
O Q Severity A; no files affected .
Se_feri'ry B; single Severity A; Severity A;
file affected multiple files multiple files
affected affected
L il b

Our knowledge discovery :
algerithms find patternsin |
defect descriptions and :

i i Our tfree map describes : i Product management

i f the rules for assigning i f gets to decide which

i i defect priorities and effort i i defects to prioritize

1 clusters them to find which frmmmmmmmTm o Rttt
defects affect many files

I
I
e e e

6/5/2018

Defects database -

Defects

Product: large > 10 MLOC
Period: 2010-17

Total records: ~14K
Different filters ...

Main tools: Q 0

Problem formulation

* How can we predict the severity of the defect?
— Imagine we discover a bug
— We need to quickly assess if this bug should be fixed in this release or not
— We need to assess if this is going to be a lot of work

» Today’s solution
— Architect and quality engineer make the assessment

6/5/2018

hatoerative

GOTEBORGS
UNIVERSITET

Mining association rules for defect prioritization

{phaseFound=PRODUCT VALIDATION TESTING
answerCode=B2 - To be corrected in this release,
Importance=30}

{phaseFound=Customer,
answerCode=B2 - To be corrected in this release,
submittedOnSystemPart=VERY IMPORTANT PART}

{phaseFound=PRODUCT VALIDATION TESTING
answerCode=B2 - To be corrected in this release,
FollowUpOn=,

ClonedToAllReleases=YES
submittedOnSystemPart=LI}

=> {Severity=A}
supp=0.0016 confidence=0.83 lift=9.95

=> {Severity=A}
supp=0.0011 confidence=0.88 lift=10.45

=> {Severity=A}

supp=0.0013 confidence=0.80 lift=9.55

GS
UNIVERSITET

Can we distinguish Severity A defects from others?

Decision tree: J48 (Weka) + ClassBalancer

148 pruned tree (example)

VerificationLevelRequired =

phaseFound =: A (1.62)

phaseFound = Customer: A (60.88/12.3)

phaseFound = Design Test (DT): Other (38.48/8.1)
phaseFound = Document review (CPI1): Other (11.75/1.62)
phaseFound = FOA: A (28.66/10.85)

phaseFound = Function Test (FT): Other (228.56/40.48)
phaseFound = PRODUCT VALIDATION TEST: Other (6.86/3.24)
phaseFound = INTERNAL TEST: Other (5.79)

phaseFound = Requirement Review: Other (5.06)
phaseFound = System Test (ST): Other (148.34/61.53)
VerificationLevelRequired = Customer: A (3.24)
VerificationLevelRequired = Design Test (DT): A (22.67)
VerificationLevelRequired = Function Test (FT): A (66.39)
VerificationLevelRequired = PRODUCT VALIDATION TEST: A (6.48)
VerificationLevelRequired = Requirement Review: A (4.86)
VerificationLevelRequired = System Test (ST): A (66.39)

Number of Leaves : 16
Size of the tree : 18

Accuracy =77.70%

True Positive(A) = 0.642
False Positive(A) = 0.088
F-Score(A) = 0.742

True Positive (Other) =0.912
False Positive (Other) = 0.358
F-Score(B) = 0.804

6/5/2018

10

GOTEBORGS
UNIVERSITET

Can we distinguish Severity A defects from others?

* Potentially valuable features (using filter):
* phaseFound
» Keywords headline: branch, test case, underscore
» Kyewords desc: descr_info, descr_requirement, descr_test,
descr_debug, descr_log...
» DaysUntilAssigned

* Records = 6342

» Features =49
* Directly available
» Time periods between changes of states
» Keywords appearance in description and header

EXAMPLE 3: PREDICTING ENERGY USAGE BASED ON
DRIVING PROFILES

MASTER THESIS WORK OF ERIK TEVELL, CHALMERS

6/5/2018

11

&

1 f—
Softuare
Auchitectuses

G £
UNIVERSITET

Predicting vehicle speed for
electrical vehicles
» Predicting speed is needed to

— Predict energy consumption
— Predict the available driving distance

» Using formal models is not possible because
of the variability of the scenarios

* Machine learning can help to predct the
speed

w
a

Vehicle Speed [km/h]

Vehicle Speed [km/h]

D tration: Trivial prediction

— Actual value
—— Predicted value

s s + 3 " . +
400 600 800 1000 1200 1400 1600
Time [s]

g.
g

Predictions: Artefact 2.1

— Actual value
—— Predicted value

0 200 400 600 800 1000 1200 1400 1600
Time [s]

 Aatortve
Softuare
Authitectuses

Accuracy of complex model
outruns trivial models?

« Trivial models are not always the worst ones

* ML can be costly in terms of time, and is
much better in certain scenarios, but worse
in other scenarios

Average RMSE difference: Artefact 1

RMSE [km/h]

—— Configuration T
=== Configuration A
=== Configuration C

Configuration D
= Configuration F

10 20 30 40
Time step [s]

Average RMSE per time step: Artefact 2.1

RMSE [km/h]

—— Configuration:
=== Configuration:
= Configuration:
Configuration:
——— Configuration:
=== Configuration:

10 20 30 40 50 60
Time step [s]

6/5/2018

12

I*.'cwlrrr
o Sedtware
S hothitectuses
GOTEBORGS pio
UNIVERSITET

CHALLENGES

] hatorratie
Software
Aeihitertues

Integrated architectures instead of distributed
architectures

| Distributed architecture == multiple data sets |

Multiple data sets == multiple formats Integrated data sets == single format

Multiple data sets == multiple keys Integrated data sets == one key

! Integrated data sets == one time stamp

{ Multiple data sets == multiple time stamps

6/5/2018

13

hatoerative

@ b
S hechitectuses

GOTEBORGS

UNIVERSITET

Data quality limits ML / Al

Cars’ EE system <

Actions

Architecture and functions Knowledge

& recommendations

Algorithmsand components < y
| Information

Sensors < Data

| 'y

if

Physical conditions (e.g. weather) “_. I Measurand/ Measured entity

..

_ Measurement

Al-based systems Label 1: Two persons

Machine learning &
Al algorithms

methods & instruments

Label 2: Vase

Aatoercitive
1 Scdtware
Aeihitertues

Verification and validation of
machine learning algorithms

» White-box ML testing can still be
assessed using coverage-based
criteria

» Coverage-based measurement of test
progress makes no sense for black-
box ML algorithms

148 pruned tree (example)

VerificationLevelRequired =

phasefound = A (1.62)

phaseFound = Customer: A (60.88/12.3)

phaseFound = Design Test (DT): Other (38.48/8.1)

phaseFound = Document review (CPI): Other (11.75/1.62)

phaseFound = FOA: A (28.66/10.85)

phaseFound = Function Test (FT): Other (228.56/40.48)

phaseFound = PRODUCT VALIDATION TEST: Other (6.86/3.24)

phaseFound = INTERNAL TEST: Other (5.79)

phaseFound = Requirement Review: Other (5.06)

phasefound = System Test (ST): Other (148.34/61.53)

VerificationLevelRequired = Customer: A (3.24)

VerificationLevelRequired = Design Test (DT): A (22.67)

VerificationLevelRequired = Function Test (FT): A (66.39)

VerificationLevelRequired = PRODUCT VALIDATION TEST: A (6.48)
ficati i i iew: A (4.86)

VerificationLevelRequired = System Test (ST): A (66.39)

Number of Leaves : 16
Size of the tree : 18
T T T T T T T T T T Ty T
\ feature maps featur Raps _\
\ c s Nl \
input feature maps feature mags, N ™
2x32 Wx28 1414 ‘3\\ R e
. %
N k\\

s e o\
R A \ \
5x5 \\:! Tt NN,
| S comonn _ ngmargi, MNevon . _ .

feature extraction classification

Figure source: NVIDIA

6/5/2018

14

ORGS

GO
UNIVERSITET

Summary
Opportunities and challenges

* Opportunities
— Safe automation of common tasks (e.g. defect prioritization)
— White-box, traceable recognition of patterns (e.g. source code violations)
— Predictions with better accuracy (e.g. distance prediction)
— <all kinds of optimizations>

» Challenges
— High quality machine learning required integrated architecture
— Data quality is more important than algorithm quality
— Coverage-based safety analysis needs to be replaced with debugging of
"boundary” scenarios

Mirostaw Staron

' Automotive
Software
Architectures

An Introduction

B speinger

Software
Development

Measurement
Programs

6/5/2018

15

I*.'cwlrrr
o Sedtware
S hothitectuses
GOTEBORGS pio
UNIVERSITET

Cars’ EE system Al-based systems

Actions

N

Architecture and functions < Knowledge

& recommendations

~

Machine learning &

Algorithms and components Al algorithms

A

Information

N
e
Sensors i Data

ﬁm‘ Measurement

methods & instruments

Physical conditions (e.g. weather) k | Measurand / Measured entity

] hatorratie
Software
Aeihitertues

Probabilistic processes mixed with deterministic
processes

» Today’s algorithms are based on control loops and deterministic behavior
— Recognizing a speed limit of 60 km/h always leads to the same behavior
— Failure to recognize the limit leads to default behavior: "ignore”

» Tomorrow’s algorithms will need to work with probabilities
— Recognizing that the road sign is 60% speed limit of 60 km/h and 40% speed limit of 80 km/h needs
additional sources to validate the data
= Enhanced data quality (multiple sources)

= Risk management — what happens if we reduce the speed to 60 km/h while in a traffic flow with other
cars driving 80 km/h

6/5/2018

16

