

Conflict as Software Levels Diversify

Fredrik Asplund, KTH Royal Institute of Technology SCSSS 2019

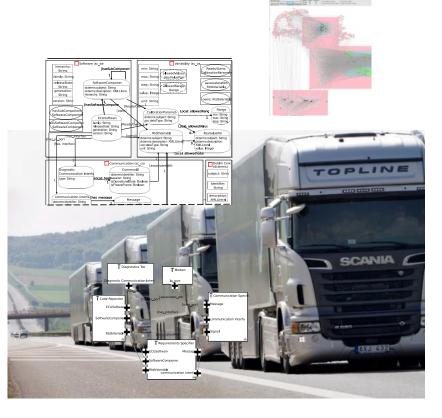
Researcher in the System Safety Field

- Telecommunications Industry, 2003-2010
- PhD System Safety and Tool Integration, 2014
- PostDoc Rolls-Royce plc, 2015-2018
- Currently at KTH, Division of Mechatronics
- (And also at SAAB AB)

Division of Mechatronics?

Societal values

Energy and resource efficiency Efficient concurrent engineering Safe machines and systems Competitive region Better life

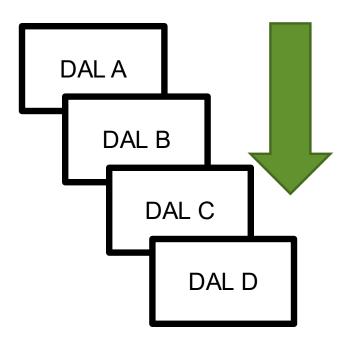

Technical solutions Vehicle prototypes Open source tool integration software Engineering tool prototypes Energy optimal control strategies Assistive device prototypes

Model based methods and frameworks

Multi-domain optimization Embedded systems architecting Data and tool integration Modelling languages Design guidelines

Professorial chairs

Embedded control systems Mechatronics Dependable control systems Cyber-physical systems



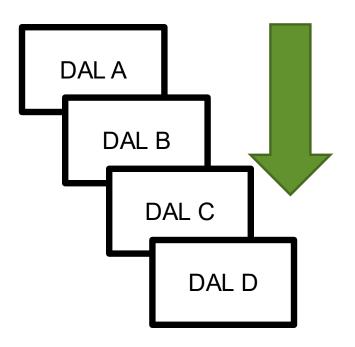
This Presentation

- Software Levels, and the Influence by Safety-Related Standards?
- Conflict Centered on Software Levels
- Studies in Management / Cognitive Systems Engineering
- So What?

Software Levels – Changing Importance

- Some safety-relevant standards, like DO-178C, allow manufacturers to treat software components differently based on the components' relation to the safety of the end product.
- This is supposed to be a cost driver.

DAL Levels – Example Differences


- Higher levels require increasing independence between artefacts, and between those producing artefacts and those reviewing them.
- Higher levels require increasingly stringent handling of data through change reviews, tracking, traceability, etc.
- Higher levels require verification of the test coverage.

	Objective		Activity	Applicability by Software Level				Output		Control Category by Software Level			
	Description	Ref	Ref	Α	В	С	D	Data Item	Ref	Α	В	С	D
1	Test procedures are correct.	<u>6.4.5.b</u>	6.4.5	•	0	0		Software Verification Results	<u>11.14</u>	2	2	0	
2	Test results are correct and discrepancies explained.	<u>6.4.5.c</u>	6.4.5	•	0	0		Software Verification Results	<u>11.14</u>	0	0	0	
	Test coverage of												

Table A-7 Verification of Verification Process Results

Software Levels – Changing Importance

- Some safety-relevant standards, like DO-178C, allow manufacturers to treat software components differently based on the components' relation to the safety of the end product.
- This is supposed to be a cost driver.
- Lower levels are becoming increasingly important, as Artificial Intelligence and Predictive Maintenance are difficult to assure to higher levels.

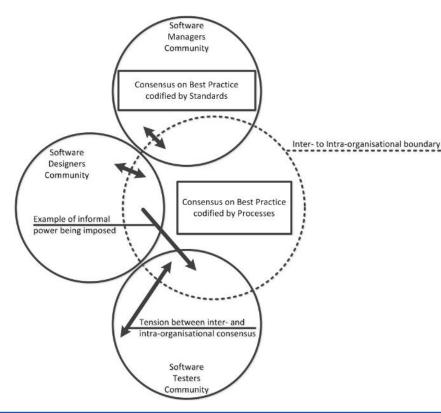
Standards – The Holy Books of Engineers?

Exact step-by-step descriptions of practice

Vs

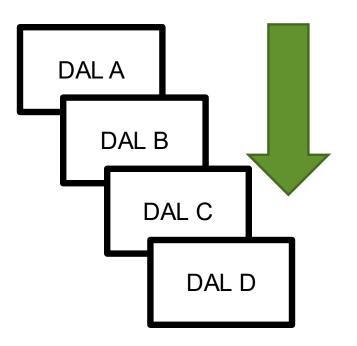
- > Part of a system of standards
- > Implicit cause and effect
- > High-level process descriptions
- > Mainly for liability

By [in NYC Wanderer (Kevin Eng)] - originally posted to Flickr as Gutenberg Bible, CC BY-SA 2.0, https://commons.wikimedia.org/w/index.php?curid=9914015



Communities of Practice

"groups of interdependent participants [that] provide the work context within which members construct both shared identities and the social context that helps those identities to be shared"


Software Communities of Practice in CPS Engineering

- Software Managers
- Software Designers
- Software Testers
- 1. Standards as a way of influencing other communities *within* a firm.
- 2. Standards as a way of influencing those in the same community when adopting practices from *outside* a firm.

Changing Practice – A Risk?

- Software Managers
- Software Designers
- Software Testers
- 1. Standards as a way of influencing other communities *within* a firm.
- 2. Standards as a way of influencing those in the same community when adopting practices from *outside* a firm.

Conflict within the Software Designer Community

- Tactical Designers
 - Wants to minimize the risk of not delivering on time with the available resources.

- As lower levels become more important, see it as an opportunity to drop some parts of existing practice.
- Wants to diversify practice across levels.

- Strategic Designers
 - Wants to anticipate long-term needs, which means dealing with the risk of choosing between several uncertain paths on how to evolve the organization and products.
 - As lower levels become more important, see it as an opportunity to introduce new practice from external sources.
 - Wants practice to be uniform across levels.

No Objective Answer – Resolution by Mission Statement

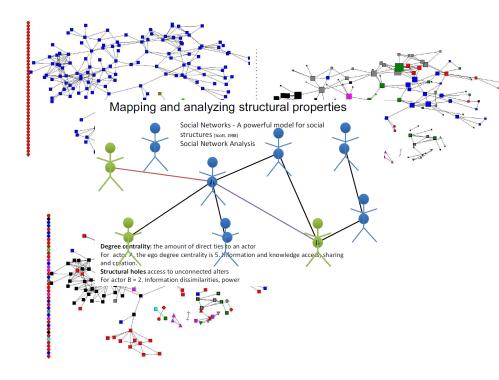
- To discern whether elimination or transformation works best would require a significant amount of field data to establish.
- Other priorities such as liability play an important part.
- Resolved by the firm's mission statement:
 - Majority likely to support tactical designers.
 - Early adopters likely to support strategic designers.

Risks Associated with Each Perspective

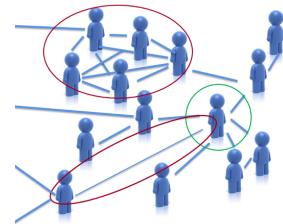
- Tactical Designers and the Majority
 - Risks splitting the software designer community into smaller parts, which have a difficult time communicating with each other.
 - Engineers working at higher levels of assurance will gain little experience from new techniques, such as artificial intelligence and predictive maintenance

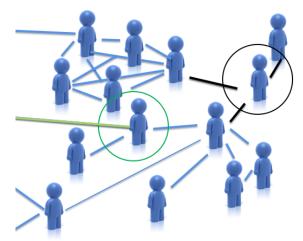
- Strategic Designers and Early Adopters
 - Risk using techniques for which there is little guidance, and which require a broad competence to understand.
 - Not enough, or not the right, resources internally to the firm to investigate properly.

What to Do?


- Tacit Engineering Practice
- Different Communities
- Complex and Vague Standardization
- Non-technical Priorities (Liability, Value Creation, ...)
- Organizational Values

. .


Studies in Management / Cognitive Systems Engineering


Management – Social Network Analysis

Highly connected individuals information advantage that positive influences innovation (<u>Mehra</u> et al., 2001; Tsai, 2001) and Ideation (Björk and Magnusson, 2009; Björk et al., 2011)

Dense network structures resource sharing benefits (Hansen, 1999; <u>Ahjua</u> 2000), knowledge development (<u>Granovetter</u>, 1973) positive for ideation (Björk et al., 2011)

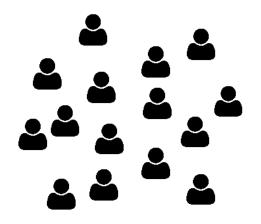
The strength of weak ties (Granovetter, 1973) Creativity (Perry-Smith and <u>Shalley</u>, 2003, Perry-Smith, 2006) Radical innovations (Hemphäla and Magnusson, 2012)

Knowledge domain

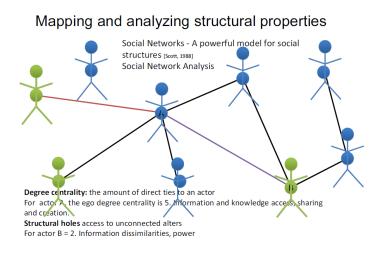
spanners – individuals connected in different knowledge domains, have a positive relationship with ideation performance (Björk, 2012)

•Bridging **structural holes** (Burt et al., 2000; Burt, 2001; Björk et al;2011)

•Microprocesses and Individual Strategic orientation- Tertius lugens (Obstfeld, 2005)



Cognitive System Engineering – Problem-driven


- Operator and Machine perceived as one system.
- Problem-driven design

• The system to be analyzed can be an organization.

Who In Firm Networks Can Mitigate This Conflict?

- Analysis of an innovation platform
 - CPS development firm
 - Global reach
 - 23.000 users on platform
 - 4.500 active users on platform
 - 5.503 ideas submitted on platform
 - 80 ideas selected for implementation
 - Several types of ideas, ranging from technically complex to socially focused.
 - All firm functions active, ranging from secretarial to factory floor operators.

Who In Firm Networks Can Mitigate This Conflict?

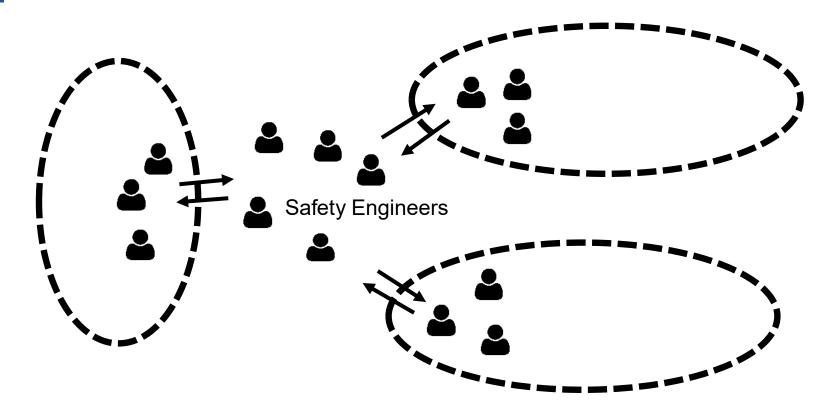
۸

	Analysis of a						
Mapping and analyzing stru	ooment firm						
Social Networks - A pov structures [scott, 1988] Social Network Analysis	Which group is already						
	supporting the	on platform					
	organization by solving	users on platform					
•	conflicts and improving	submitted on platform					
Degree contrality: the amount of direct ties to an actor For actor A, the ego degree centrality is 5, mormation and creation.	the working context for	ected for implementation					
Structural holes access to unconnected alters For actor B = 2. Information dissimilarities, power	engineers?	s of ideas, ranging from omplex to socially focused.					

All firm functions active, ranging from secretarial to factory floor operators.

· · · · ·

1 10



Safety Engineers Emerge as Top Facilitators

- Safety engineers:
 - Were facilitators:
 - > Commented significantly higher on successful ideas than other firm functions.
 - > Did not submit more or push through their own ideas.
 - Focused on administrative innovations related to e.g.:
 - > Non-technical safety issues
 - > Social interactions
 - > Communication

Networking on Safety Culture

Conclusion

- Change is coming to our way of working with software levels.
- Risks will be difficult to grasp and will vary across firms.
- The mission of safety engineers (should) include safety culture. This can be a wider mission than ensuring adherence to processes.
- Emphasize the mediatory role of identifying required and viable changes to interactions between and within communities.

