
PUBLIC 

DR. DAVID BACA

OCTOBER 23, 2019

7TH SCANDINAVIAN CONFERENCE ON SYSTEM & SOFTWARE SAFETY

GENERIC SAFETY 

SOFTWARE APPROACH

IMPLICIT SAFETY



PUBLIC 1

Safe Generic SW – Safety Elements out of Context in ISO26262

Complex

Drivers

Microcontroller

AUTOSAR Runtime Environment (RTE)

Microcontroller Drivers Memory Drivers I/O Drivers

I/O Hardware 

Abstraction

Memory Hardware 

Abstraction

Memory ServicesSystem Services

Onboard Device 

Abstraction

Communication Drivers

Communication 

Hardware Abstraction

Communication Services

Application Layer
P

o
rt

A
d

c

D
io

P
w

m

Ic
u

R
a
m

T
s
t

C
a
n

F
ls

W
d

g

L
in

M
C

U

F
r

G
p

t

S
p

i

MemIf

Driver for 

ext.

I/O ASIC

Driver for 

ext.

ADC 

ASIC

WdgIf

Tp

C
o

m

N

m

Ip
d

u

M

Nm 

If

ext. 

Drv
Trcv.

NvMF
iM

W
d
g

M

D
e
t

D
e
m

C
o
m

M

A
U

T
O

S
A

R
 O

S

PduR
I/O Signal Interface

Ea Fe

e

D
lt

S
tb

M

E
c
u
M

E
e
p

E
th

B
s
w

M

D
c
m

D
e

b
u

g

g
in

g

X
C

P

xxx Interface

C
s
m

F
ls

T
s
t

C
o

re
T

s
t

SEooCs:

• generic SW elements deployed to 

different applications and also to 

different customers.

• not developed in a context of a 

particular system (item).

• safety requirements are assumed

• integration requirements imposed

• an example are AUTOSAR Basic 

SW components

AUTOSAR Layer Architecture



PUBLIC 2

SW SEooC development in ISO26262

Software level

6 Product development

Item  developmentSoftware SEooC component development

4 Product development 

System level

Considered not in scope of 

SW SEooC development

Considered partially in 

scope of SW SEooC 

development

Considered not in scope of 

SW SEooC development

3
Concept phase

3-5
3-6

3-7

3-8

Considered not in 

scope of SW SEooC 

development

6 Product development

Software level

4 Product development 

System level

3
Concept phase

2-

6.4.5.

6 b)

Establish validity 

of assumptions

8-8 Change 
management

8-8 Change 

management

valid

not 

valid

2-

6.4.5.

6 a)

Assumptions on system level

Considered fully in scope 

of SW SEooC 

development

Considered partially in 

scope of SW SEooC 

development

Considered fully in scope 

of SW SEooC 

development

Considered partially in 

scope of SW SEooC 

development

6-5

6-6

6-7

6-8

6-9

6-10

6-11

4-6

4-7

4-8

4-9

4-5

Copyright ISO26262 Part 10

Interaction with customers

SEooC definition:

• assumed purpose and role

• assumed surrounding architecture

• assumed integration environment

• assumed higher level safety 

requirements

• derived safety requirement for 

SEooC

SEooC integration:

• check validity of assumptions

• perform impact analysis if 

assumptions do not fit



PUBLIC 3

Motivation

Gate (context switching)

Safety-related partitionPartition Partition

ES element

ES elementES element

Verification

element

• Generic approach for any SW element.

• Easy integration into any SW safety architecture.

• Development of generic SW elements that are on different safety paths but that 

are not responsible for safety.

• Enable integration of SW elements into safety partitions to avoid gated calls.



PUBLIC 4

Faults Considered by Safety SW

Faults Causes Measures

Hardware random faults Caused by transient or permanent HW failures.
• HW-based detection if exists

• SW-based fault detection

Software systematic 

faults
Caused by mistakes in SW development process

• Compliant ISO 26262 process

• Architectural measures

Software interference

Fault propagation from lower ASIL SW 

component.

Caused by HW random faults or SW systematic 

faults.

• Interference prevention

• Interference detection



PUBLIC 5

Implicit Safety Derivation
The derivation of implicit safety by example: 

Assume a simple element with functions F_read and F_write where each is defined by a single respective requirement. 
The requirement for F_write is safety related. See Figure (a) where green denotes the safety-related part and gray non-safety-related.

F_read can affect F_write including the registers F_write writes to; therefore it has to be developed according to ISO 26262 as well –
Figure (b). HW faults and SW interference can impact integrity of F_read which can then corrupt F_write. 
As a result, F_read needs to be resistant to such faults – Figure (c). However, not all HW faults are of concern; faults that impact only the 
correctness of values returned by F_read do not have to be detected as long as those values are valid. Invalid returned values can 
corrupt upper layers.

F
_
w

ri
te

()

F
_
re

a
d
()

S
W

 C
o
m

p
o
n
e
n
t

S
W

 C
o
m

p
o
n
e
n
t

Upper Layer

microprocessor

Requirement WriteRequirement Read

F
_
w

ri
te

()

F
_
re

a
d
()

S
W

 C
o
m

p
o
n
e
n
t

S
W

 C
o
m

p
o
n
e
n
t

Upper Layer

microprocessor

Requirement WriteRequirement Read

F
_
w

ri
te

()

F
_
re

a
d
()

S
W

 C
o
m

p
o
n
e
n
t

S
W

 C
o
m

p
o
n
e
n
t

Upper Layer

microprocessor

Requirement WriteRequirement Read

(a) (b) (c)

IS element consists of functions such as F_read only. Since F_read functions do not corrupt each other and they also do not corrupt any 

other function they coexist with in the same partition, an IS element can coexist with any other safety-related element of the same ASIL.

The IS requirement states that neither inner integrity corruption nor external integrity corruption occurs.



PUBLIC 6

Forming and Implicit Safety Element

F
_
w

ri
te

()

F
_
re

a
d
()

S
W

 C
o
m

p
o
n
e
n
t

S
W

 C
o
m

p
o
n
e
n
t

Upper Layer

microprocessor

F
_
re

a
d
()

F
_
re

a
d
()

F
_
re

a
d
()

F
_
re

a
d
()

New SW

safety element



PUBLIC 7

Implicit Safety

Element’s integrity is defined as the element being in a valid state

Implicit Safety element is a safety-related SW element that is 

allocated the IS requirement and the IS requirement is the only 

safety-related requirement allocated to the element

Explicit Safety element is an element that is allocated one or more 

safety-related requirements but not IS.

The Implicit Safety (IS) requirement is defined as follows:

A safety-related element shall not corrupt its own integrity 

and the integrity of other elements – ASIL-D.

F
_
w

ri
te

()

F
_
re

a
d
()

S
W

 C
o
m

p
o
n
e
n
t

S
W

 C
o
m

p
o
n
e
n
t

Upper Layer

microprocessor

Requirement WriteRequirement Read



PUBLIC 8

FMEA – rule-based

Applicable Fault Effects Failure Mode FM explanation Causes
Measures

(Requirements)

Yes

Out of range results 

corrupting the environment.

Crash

Memory corruption

Register out of range
Register contains unexpected 

value

Register fault

IP fault

Mask register value

Use default value

Yes

Out of context calculation 

corrupting the application.

Memory corruption

Interrupt out of order
Hardware Interrupts triggered 

outside normal conditions

Spurious interrupt

Odd-behaving IP

Check interrupt conditions

Check driver status

No Deadlock
Peripheral status 

frozen

IP does not complete the 

operation or is unable to signal 

its completion

IP or register faults
Protect waiting loops with 

maximal iteration counts

… … … … … …

… … … … … …



PUBLIC 9

Implicit Safety (IS) Advantages
IS CAN driver example

Standard Solution Implicit Safety Solution

Safety mechanisms (detect&report):

• Config Register read-back

• Config Register periodic check

• Invalid or inconsistent values check

• Stuck-at faults in status registers 

check

• Spurious Interrupts check

• Inconsistent behavior at HW/SW 

interface check

Blocking mechanisms, resistance to:

• Invalid HW values (including stuck-at)

• Stuck-at faults in status registers

• Spurious interrupts

ES element

ES driverES CAN driver

CAN

Application Application

Error

reporting
ES element

ES driverIS CAN driver

CAN

Application Application

Non-safety solution

No safety mechanisms in CAN driver

Safety mechanisms in the interface

• Context switching

• Gate checks during context switching.

• Data exchange verification

• Timeouts

ES element

ES driverIS driver

CAN

Application Application

CAN driver



PUBLIC 10

IS examples

NXP microprocessor

HAL

middleware

application

IS driver

HW IP

IS stack

IS SW does the following:
• blocks HW faults, responses:

• default value

• timeout response

• ensures valid data exchange

• by blocking HW faults

• development process

Application performs:

• control flow monitoring (FfI)

• evaluation of responses and system 

reaction to failures

NXP microprocessor

HAL

middleware

application

IS math  

library

IS math library does the following:
• nothing special

• safety manual lists integration 

requirements

Application performs:

• control flow monitoring (FfI)

• plausibility checks if needed (safety 

analysis)



PUBLIC 11

Conclusions

Implicit Safety 

• provides a safety concept that allows development of any SW element as a safety-

related element. 

• does not compromise the generic aspects of the SW element.

• enables efficient integration of safety SW elements into any safety application 

architecture.

• uses simple FMEA that makes the safety analysis easy.

• incurs very small execution and code size overhead

− robustness measures in the SW element

−application monitoring but that is usually in place anyway

The Implicit Safety (IS) requirement is defined as follows:

A safety-related element shall not corrupt its own integrity 

and the integrity of other elements – ASIL-D.

Implicit Safety Solution

Blocking mechanisms, resistance to:

• Invalid HW values (including stuck-at)

• Stuck-at faults in status registers

• Spurious interrupts

ES element

ES driverIS CAN driver

CAN

Application Application



NXP and the NXP logo are trademarks of NXP B.V. All other product or service names are the property of their respective owners. © 2018 NXP B.V.


