COMBITECH

Yin Chen Functional Safety Engineer

The challenges for today's functional safety engineer

 A view based on railway, automotive and machinery industries

7th Scandinavian Conference on System and Software Safety. October 22, 2019. Stockholm.

About Presenter

Yin Chen

- 11 years' Functional Safety (FS/FuSa) and Reliability, Availability, Maintainability, Safety (RAMS) experiences as an engineer and consultant mainly for E/E systems.
- Areas of expertise:
 - <u>Functional Safety</u>: Certified Functional Safety Engineer (IEC 61508. HW/SW Бипстіолаl Safety Manager (ISO 26262. Automotive ТÜVRheinland®).
 - <u>Reliability</u>: Certified Reliability Engineer (CRE), Certified Maintenance and Reliability Professional (CMRP).
 - <u>System Engineering</u> and <u>Project Management</u>: Associate System Engineering Professional (ASEP NOSE), Project Management Professional (PMP PLL).
- Standard committee:
 - Stakeholder of UL 4600 (Safety for the Evaluation of Autonomous Products).
 - Former member of CENELEC/TC 9X/SC 9XA/WG 18 (Maintenance of EN 50128).

About Combitech

No. 1 in the Nordics for Cyber Security - 300 experts

CORE VALUES

- Competence
- RelationsResults

1 company in the Nordics 4 countries 39 offices Development centre in India Active throughout the world

25

Ranking among Sweden's best employers Wholly-owned independent company of Saab AB

Turnover 2012-2017

our ti catal

courses in our training catalogue

COMBITECH

3

About Combitech

- Complete project execution, advisory and support.
- From concept to product launch.

Cyber Security

Product Safety

The Role of Functional Safety Engineer

The Challenges

3) S

2

Summary and Outlook

The Role of Functional Safety Engineer

2 The Challenges

3

Summary and Outlook

FS Engineer by Definition- Railway

- Definition:
 - "entity that is responsible for the correct accomplishment of the safety management." Clause 3.5, prEN50126-4:2012¹
- Main responsibilities:

¹ Up to now, there is no official definition of functional safety engineer in railway standards, except from the intermediate prEN50126-4:2012 and prEN50126-5:2012 where the role is called "safety manager".

COMBITECH

FS Engineer by Definition-Automotive

- Definition:
 - "role filled by the person responsible for the functional safety management during the item development." Clause 1.109, ISO 26262-1:2011¹
 - "person or organization responsible for overseeing and ensuring the execution of activities necessary to achieve functional safety." – Clause 3.140, ISO 26262-1:2018²

COMBITECH

^{1,2} This role is called "safety manager" in ISO 26262.

FS Engineer by Definition-Machinery¹

- Definition:
 - No explicit definition yet
- Main responsibilities:
 - No explicit responsibilities yet

¹ "Machinery" in this presentation excludes robots, agricultural and forestry machinery, and is based on the following latest published functional safety standards in machinery, i.e. ISO 13849-1:2015, ISO 13849-2:2012, EN 62061: 2005 and ISO 15998:2008.

The Role of Functional Safety Engineer

Summary and Outlook

3

The "Traditional" Challenges

• E.g. Quality, Re-Engineering, Competency, Safety Culture...

The Challenges for Today's FS Engineer

Standards

- Changing/Upgrading of standards
- Compliance to Different Standards

- Traditional Hazard Analysis Vs. STPA
- Static/Single Data Source Vs. PHM
- Documentation-based
 Vs. Model-based
 Design
- Waterfall Vs. Agile
 Development

Cybersecurity

- What standards/ guidelines to follow?
- How to interact with functional safety?
- How to achieve the required SL/CAL?
- How to build a
- cybersecurity culture?

- Are the current published standards/guidelines sufficient?
- How to combine FS and SOTIF?
- How to test and validate? How to build the safety case?
- Complex safety
 functions
- Who is going to "assess" safety?

Electrification

- What standards/ guidelines to follow?
- Vehicle safety?
- Safety of REESS?
- Charging safety?

Changing/Upgrading of Standards.

Keep pace with the changing/updating standards?

Standards

Methods

Cybersecurity

Automated Vehicle

Electrification

Compliance to Different Standards

Compliant to several standards in parallel?

	EN	ISO	IEC	EU National
	EN 50126:1999	-	IEC 62278:2002	SS EN, BS EN
	EN 50126-1/-2:2017	-	-	SS EN, BS EN
Railway	EN 50128:2001	-	IEC 62279:2002	SS EN, BS EN
Kaliway	EN 50128:2011	-	IEC 62279:2015	SS EN, BS EN
	EN 50657:2017	-	-	SS EN, BS EN
	EN 50129:2003	-	IEC 62425:2007	SS EN, BS EN
Automotive	-	ISO 26262	-	SS ISO, BS ISO
Machinany	-	ISO 13849	-	SS ISO, BS ISO
Machinery	EN 62061	-	IEC 62061	SS EN, BS EN

Cvbersecurity

Automated Vehicle

Electrification

Methods

Standards

Remark: SS 7740 links ISO 26262 and ASPICE.

Various research projects are on this topic...

Traditional Hazard Analysis Vs. STPA

Automated Vehicle Electrification

- PHA, SSHA, SHA, O&SHA, FTA, FMEA, HAZOP...
 - How to efficiently analyse software safety?
 - Impact from updating of methods? E.g. AIAG&VDA FMEA HDBK (1st edition) 2019.

•

•

.....

- Systems-Theoretic-Process-Analysis (STPA)
 - How to perform?
 - · How to combine it with traditional methods?
 - Suitable for your projects?

Static/Single Data Source Vs. PHM

- Is MTBF a "reliable" parameter?
 - 1 device A, it operates 100 hours. One failure happens. \rightarrow MTBF_A=100 hours.
 - 100 device B, each operates 1 hour. One failure happens. \rightarrow MTBF_B=100 hours.

Does MTBF itself distinguish which device has better reliability?

- How accurate are the static reliability data sources?
 - e.g. MIL-HDBK-217, IEC TR 62380, etc. for reliability calculation.

- "Smart maintenance": How trustable the "big data"?
- How accurate the mathematic algorithms?

.

Farly failure Wear-out stage Useful life stage Time (Source: CRE Handbook [3]) Free-text **Risk** leve allocation resources Feeding risk mo with inforred Real-time SMS architecture Self-improving risk model based risk monitoring dashboard on big-data machine learning

Cybersecurity

Automated Vehicle

Electrification

Standards

Methods

Documentation-based Vs. Model-based Design

Standards	Methods	Cybersecurity	Automated Vehicle	Electrification

- Documentation-based design
 - Difficult to identify design errors early
 - Traceability
 - Maintenability
 - ...

• ...

- Model-based design
 - How to link it with the existing documentation-based design?
 - How safe the model-based design tools are?
 - How could the different model-based design tools integrate safely?

COMBITECH

Waterfall Vs. Agile Development

Standards

Methods

Cybersecurity

Automated Vehicle

Electrification

- Safe and agile. Is it a paradox?
 - Complexity of projects
 - Competency of people

•

Cybersecurity

lards	Methods	Cybersecurity	Automated Vehicle	Electr

Stand

In railway

<image><section-header><image><section-header><image><section-header><section-header><section-header>

(Source: UNIFE Vision Paper on Digitalisation [6])

In the safety case, "Both physical security threats and IT-security threats shall be addressed."

(Source: EN 50129:2018)

COMBITECH

(Source: CYRAIL Report [5])

ification

Cybersecurity

In automotive

(Source: 5GAA The Case for Cellular V2X for Safety and Cooperative Driving [7])

(Source: AV 3.0 [8])

"The organization shall institute and maintain effective communication channels between functional safety, cybersecurity ... that are related to the achievement of functional safety."

(Source: ISO 26262-2:2018)

CCMBITECH

Cybersecurity

Standards	Methods	Cybersecurity	Automated Vehicle	Electrification

In machinery

(Source: www.cat.com)

"... the security threats (internal or external) might influence the safety integrity and the overall system availability."

(Source: IEC TR 63074:2019)

Cybersecurity Standards Methods Cybersecurity Automated Vehicle Electrification

- What standards/guidelines to follow?
 - Railway: EN Technical Specification (not released). AS 7770:2018.
 - Automotive: ISO/SAE CD 21434 (not released). SAE J3061:2016. BSI PAS 1885:2018.
 - Machinery: IEC TR 63074:2019. ISO/TR 22100-4:2018.
- How to efficiently interact with functional safety?
- How to achieve the required Security Level (SL) / Cybersecurity Assurance Level (CAL)?
- How to build a cybersecurity culture?

In railway

High capacity lines: more than 700 passengers per train
 Low capacity lines: under 300 passengers per train

Medium capacity lines: 300 to 700 passengers per train

Grade of Automation	Type of train operation	Setting train in motion	Stopping train	Door closure	Operation in event of disruption	
GoA1	ATP* with driver	Driver	Driver	Driver	Driver	
GoA2	ATP and ATO* with driver	Automatic	Automatic	Driver	Driver	
GoA3 🔰	Driverless	Automatic	Automatic	Train attendant	Train attendant	
GoA4	UTO	Automatic	Automatic	Automatic	Automatic	

*ATP - Automatic Train Protection; ATO - Automatic Train Operation (Source: UITP. World Report on Metro Automation- Statistics Brief. 2018 [9]) Basic functions of automated train operation (IEC 62267:2009):

- Ensure safe route
- Ensure safe separation of trains
- Ensure safe speed
- · Control acceleration and braking
- Prevent collision with obstacles
- Prevent collision with persons
- Control passengers doors
- Prevent injuries to persons between cars or between platform and train
- Ensure safe starting conditions
- Put in or take out of operation
- Supervise the status of the train
- Perform train diagnostic, detect fire/smoke and detect derailment, handle emergency situations (call/evacuation, supervision)

COMBITECH

In automotive

- Various Voluntary Safety Self-Assessment (VSSA) Disclosure. E.g. from Waymo etc. (<u>https://www.nhtsa.gov/automated-driving-</u> systems/voluntary-safety-self-assessment)
- Various frameworks. E.g. PEGASUS (<u>www.pegasusprojekt.de</u>). Uber Safety Case (<u>uberatg.com/safetycase/gsn</u>)
- In addition, automated trucks: E.g. from Volvo and Scania etc.

Standards	Methods		Cyb	erse	curity	/	Au	toma	ated	Vehi	cle		Ele
	ilities of ed Driving	Safe Operation	Safety Layer	Operational Design Domain	Behavior in Traffic	User Responsibility	Vehicle-Initiated Handover	VehOpInitiated Handover	Interdep. Veh. Op. & ADS	Data Recording	Security	Passive Safety	Safety Assessment
	ID	9	Ŕ	ത്*	宿	Ŷ		Ì	Ş	V		6	8
FS_1 Determine loca	ition			Х	Х						Х		x
FS_2 Perceive relev	ant objects				х						х		х
FS_3 Predict the future relevant object					х						Х		х
FS_4 Create a collisi lawful driving					х						Х		Х
FS_5 Correctly exec	ute the driving plan				Х						х		х
FS_6 Communicate with other (vul	and interact nerable) road users				х						Х		Х
FS_7 Determine if sp performance is			х	Х							Х		Х
FD_1 Ensure control operator	ability for the vehicle	Х				Х	Х	Х	х		х		Х
FD_2 Detect when de performance is		х									Х		Х
FD_3 Ensure safe me and awareness		х	х			Х	х	Х	х		Х		Х
FD_4 React to insuff performance a	icient nominal nd other failures	х	х								Х		х
FD_5 Reduce system in the presence		х	Х								Х		х
FD_6 Perform degra reduced syster		Х	Х	Х			Х				Х		х

Standards

- In machinery
 - Exist some pilot applications. E.g. Volvo CE Electric Site Research Project (https://www.volvoce.com/global/en/this-is-volvo-ce/what-we-believe-in/innovation/electric-site/).
 - In the current published machinery standards, no specific defined automation level yet.

Methods	C	vb
111011000	0	,~

Standards

Automated Vehicle Electrification

Table A.3 – Software Architecture (7.3)

ersecurity

- Are the current published standards/guidelines sufficient?
 - Railway: IEC 62267, EN 5012X
 - Automotive:
 - ✓ ISO 26262, ISO/PAS 21448
 - ✓ UL 4600 (not released. draft available), IEEE P7009 (not released)
 - Machinery: ISO 17757, ISO/WD 23725 (not released)
- How to combine functional safety and SOTIF?¹
- How to test and validate? How to build the safety case?²
- Complex safety functions³
 - E.g. Those involving radar, lidar, camera, etc.
- Who is going to "assess" safety?⁴
 - Is self-certifying still trustable?

^{1,2,3,4} These challenges are for automated vehicle in automotive and machinery.

TECHNIQUE/MEASURE		Ref	SIL 0	SIL 1	SIL 2	SIL 3	SIL 4				
1.	Defensive Programming	D.14	-	HR	HR	HR	HR				
2.	Fault Detection & Diagnosis	D.26	-	R	R	HR	HR				
3.	Error Correcting Codes	D.19	-	-	-	-	-				
4.	Error Detecting Codes	D.19	-	R	R	HR	HR				
5.	Failure Assertion Programming	D.24	-	R	R	HR	HR				
6.	Safety Bag Techniques	D.47	-	R	R	R	R				
7.	Diverse Programming	D.16	-	R	R	HR	HR				
8.	Recovery Block	D.44	-	R	R	R	R				
9.	Backward Recovery	D.5	-	NR	NR	NR	NR				
10.	Forward Recovery	D.30	-	NR	NR	NR	NR				
11.	Retry Fault Recovery Mechanisms	D.46	-	R	R	R	R				
12.	Memorising Executed Cases	D.36	-	R	R	HR	HR				
13.	Artificial Intelligence – Fault Correction	D.1		NR	NR	NR	NR				

(Source: EN 50128:2011)

According to data obtained from the self-driving system, the system first registered radar and LIDAR observations of the pedestrian about 6 seconds before impact, when the vehicle was traveling at 43 mph. As the vehicle and pedestrian paths converged, the self-driving system software classified the pedestrian as an unknown object, as a vehicle, and then as a bicycle with varying expectations of future travel path.

COMBITECH

Electrification

- What standards/guidelines to follow?
- Vehicle safety?
 - E.g. Lose power while driving.
- Safety of Rechargeable Electric Energy Storage System (REESS)?
 - E.g. Lithium-ion battery.
- Charging safety?
 - E.g. fire safety, electric safety.

COMBITECH

The Role of Functional Safety Engineer

The Challenges

Summary and Outlook

Summary

- The challenges for functional safety engineer in railway, automotive and machinery are similar to some extent.
- A functional safety engineer compliant to the available standards does not necessarily mean he/she is able to solve those challenges.
- The challenges come from Standards, Methods, Cybersecurity, Automated Vehicle and Electrification.

- Open topic:
 - How should the functional safety engineer deal with those challenges?

- Potential new challenges for functional safety engineer may rise from:
 - Complex System of Systems (SoS), e.g.

Connected intelligent transportation

• Future blockchain application related to cybersecurity

COMBITECH

References

[1] Clifton A. Ericson II. Hazard Analysis Techniques for System Safety. 2nd Edition. John Wiley & Sons, Inc. 2016.

[2] Nancy. G. Leveson, John. P. Thomas. STPA Handbook. March 2018. http://psas.scripts.mit.edu/home/get_file.php?name=STPA_handbook.pdf

[3] Donald W. Benbow and Hugh W. Broome. Certified Reliability Engineer Handbook. 2009.

[4] European Union Agency for Railway. Big data in railways. ERA-PRG-004-TD-003 V1.0. 2016.

[5] CYRAIL. CYbersecurity in the RAILway sector. D.2.1 Safety and Security requirements of Rail transport system in multi-stakeholder environments. June 2017.

[6] UNIFE. Vision Paper on Digitalisation- Digital Trends in the Rail Sector. 15 April 2019.

[7] 5GAA. The Case for Cellular V2X for Safety and Cooperative Driving. 2016. http://5gaa.org/wp-content/uploads/2017/10/5GAA-whitepaper-23-Nov-2016.pdf

[8] DoT. Preparing for the Future of Transportation. Automated Vehicle (AV) 3.0. 2018. <u>https://www.transportation.gov/sites/dot.gov/files/docs/policy-initiatives/automated-vehicles/320711/preparing-future-transportation-automated-vehicle-30.pdf</u>

[9] UITP. World Report on Metro Automation- Statistics Brief. 2018. <u>http://metroautomation.org/wp-content/uploads/2019/05/Statistics-Brief-Metro-automation_final_web03.pdf</u>

[10] Aptiv, Audi, Baidu, BMW, Continental, Fiat Chrysler Automobiles, HERE, Infineon, Intel and Volkswagen, Daimler. White paper: Safety First For Automated Driving. July 2019. <u>https://www.daimler.com/documents/innovation/other/safety-first-for-automated-driving.pdf</u>

[11] NTSB. Uber Accident Preliminary Report. 2018. https://www.ntsb.gov/investigations/AccidentReports/Reports/HWY18MH010-prelim.pdf

[12] European Commission. Blockchain Now and Tomorrow-Assessing Multidimensional Impacts of Distributed Ledger Technologies. 2019. https://publications.europa.eu/en/publication-detail/-/publication/db0b29ed-d507-11e9-b4bf-01aa75ed71a1

CEMBITECH

Email: yin.chen@combitech.se