
Safety cage: an approach for safe 
machine learning systems

Sankar Raman Sathyamoorthy



Safe and Explainable AI Electric Aircraft
Light Weight Power 

electronics Automated Diagnosis
Vehicle Perception &
Fault Tolerant ADAS

RESEARCH

1997 ~125 Mölndal



 Safety analysis and verification/validation of 
MachIne Learning based systems

 Vinnova FFI, EMK, Machine Learning

 2017-2019

 9 445 000 kr



“a large portion of real-world problems
have the property that it is significantly
easier to collect the data than to explicitly
write the program”

Andrej Karpathy

Director of AI at Tesla

Machine learning

https://medium.com/@karpathy/software-2-0-a64152b37c35

Software 1.0 

• Humans write source code

• Other humans comprehend the source code

Software 2.0 

• Humans curate data and specify goals

• Backprop. and gradient descent produces 

millions of weights in neural network

• Humans cannot comprehend mapping from 

input to output



Machine learning

Slide from Markus Borg, RISE



Machine learning

Petar Velickovic AI Group, University of Cambridge
Slide from Markus Borg, RISE



Verification and Validation – Challenges for Machine learning systems
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Slide from Lars Tornberg, VCC



Verification and Validation – Challenges for Machine learning systems

Using Machine Learning Safely in Automotive Software: An Assessment and Adaption of Software Process Requirements in ISO 26262

Testing in Machine Learning: 
• Estimate prediction/generalization performance
• Improve performance during model development.

Testing in Software Testing: 
• Other attributes e.g.,

• Correctness, 
• Robustness,
• Reliability,
• Safety
• Interpretability 
• ...  

• Interaction with other system components 

Slide from Lars Tornberg, VCC



Verification and Validation – Challenges for Machine learning systems

Using Machine Learning Safely in Automotive Software: An Assessment and Adaption of Software Process Requirements in ISO 26262

• Lack of specifications
• Models are not rule based – learning from examples

• Training set is not a substitute for specifications
• Specification is general
• Training data is a sample
• Control distributional shift
• Data is imbalanced w.r.t. to safety critical cases.

• Specification break down is difficult
• Important for the safety case, which traces the 

model behavior to design and specification. 

Slide from Lars Tornberg, VCC



Verification and Validation – Challenges for Machine learning systems

Using Machine Learning Safely in Automotive Software: An Assessment and Adaption of Software Process Requirements in ISO 26262

• How to control dependencies between models. 

• Quality assurance of predictions/outputs.
• Data quality
• Where should predictions be done? 
• Trade off between execution speed and e.g., model

accuracy

• Explicit vs Implicit dependencies?

Slide from Lars Tornberg, VCC



Verification and Validation – Challenges for Machine learning systems

Using Machine Learning Safely in Automotive Software: An Assessment and Adaption of Software Process Requirements in ISO 26262

• How do we design more principled and general objective 
functions to include e.g., 
• Safety aspects,
• Fairness,
• Interpretability,
• Safe exploration

• Mismatch between ideal specification (what we want the 
model to do) and model behavior. 

Slide from Lars Tornberg, VCC



Verification and Validation – Challenges for Machine learning systems

Using Machine Learning Safely in Automotive Software: An Assessment and Adaption of Software Process Requirements in ISO 26262

• Model is stochastic
• Lack of test oracle

• Large input space 
• Unfeasable to cover all scenarios 
• Lack of robustness makes this even more

demanding
• Models are shown to not be robust to small 

perturbations
• Feature extraction makes it hard to monitor input 

data. 

• How to identify safety critical cases.

• Interpretability/ Traceability
• Is wrong prediction = bug? 
• Where is bug?
• How to correct the bug? 
• Prevents the use of inspection and walkthroughs

Slide from Lars Tornberg, VCC



Verification and Validation – Challenges for Machine learning systems

Using Machine Learning Safely in Automotive Software: An Assessment and Adaption of Software Process Requirements in ISO 26262

• System level
• Quality assurance of signals from individual models 
• Hard to get error bounds on predictions for many 

models

• Test under increasing complexity
• Interpretability 
• Data dependencies

• Future data – distributional shift  

Slide from Lars Tornberg, VCC



Distributional shift 

arXiv:1606.06565



Distributional shift 

Car, score – 0.998 Person, score – 0.93Bike, score – 0.958

Training example Example anomalies

Confidence from a deep learning model is not a good proxy for true 

confidence!



Distributional shift 

Confidence from a deep learning model is not a good proxy for true 

confidence!

https://medium.com/@deepmindsafetyresearch/building-safe-artificial-intelligence-52f5f75058f1

https://medium.com/@deepmindsafetyresearch/building-safe-artificial-intelligence-52f5f75058f1


Verification and Validation – Challenges for Machine learning systems

https://medium.com/@deepmindsafetyresearc
h/building-safe-artificial-intelligence-
52f5f75058f1

https://medium.com/@deepmindsafetyresearch/building-safe-artificial-intelligence-52f5f75058f1


Safety cage

https://users.ece.cmu.edu/~koopman/pubs/koopman18_waise_keynote_slides.pdf



Safety cage

https://users.ece.cmu.edu/~koopman/pubs/koopman18_waise_keynote_slides.pdf



SMILE II – Use cases



Safety cage with Semantic segmentation

• Mask R-CNN trained to detect cars, motorcycles
and trucks driving in a highway on a sunny day.

• Pretrained on COCO dataset

• Data generated from simulation platform: Pro-
SiVICTM from ESI.

• Training set contains around 3000 of each car, truck
and motorcycles

• Safety cage applied by analyzing the neuronal
activations of the last fully connected layer of the
classifier inside Mask R-CNN

• The safety cage is not trained (like a neural
network).

• Inputs rejected by the safety cage can be stored
and used in further training to improve the AI



Semantic segmentation – outlier data

• Example outlier scenario: Driving in an urban environment Green mask: accepted by Safety cage
Red mask: rejected by Safety cage



Semantic segmentation with safety cage – demo video

Green mask: accepted by Safety cage
Red mask: rejected by Safety cagehttps://youtu.be/M_1gD69-DTQ

Live version shown at VECS 2019 had DDS communication between simulator and the python code (NN + Safety cage)

https://youtu.be/M_1gD69-DTQ


Safety Cage for perception layer 

Inlier data 

Outlier data 

Slide from Lars Tornberg, VCC



Safety Cage for perception layer 

Slide from Lars Tornberg, VCC



Evaluation of safety cages

BL = Base Line, OM = OpenMax, A = Data Augmentation, L = Learning Rate 
Bendale, A. & Boult, T., Towards open set deep networks, CVPR, 2016

Inlier – CIFAR10

Outlier – TinyImageNet
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Specification

Design

Test



• WP2: Architectural design

• What components should be encapsulated?

• Sensor fusion (e.g., lidar, radar, and time series data from the engine)

• WP3: Safety strategy

• Safety cages in the light of the emerging standards ISO/PAS 21448 SOTIF and UL 4600

• How to act when the safety cage rejects input? (e.g., mitigation strategies, handover to driver, and graceful degradation)

• WP4: Safety-cage design and optimization

• Explore approaches to improve safety cage performance (e.g., Bayesian networks)

• Strategies to utilize data that was rejected by the safety cage. (e.g., collecting the data for retraining/model updates)

• WP5: Verification & Validation of the safety cage

• Component level testing (e.g., building on the metrics developed in SMILE II)

• System level testing both using simulators and real applications

• Demonstrator using Pro-SiVIC (Qrtech)

• Demonstrator implemented in car on public roads (VCC)

• Demonstrator implemented in truck in closed setting (AB Volvo)

• WP6: Novel test methods

• Evaluate feasibility of metamorphic testing, search-based testing, mutation testing, DNN coverage testing etc.

• Meta testing (i.e., testing the testing) using demonstrator implemented using Pro-SiVIC (RISE)

SMILE III
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