QRTECH

INNOVATIVE ENGINEERING

an EMBRON Company &

Safety cage: an approach forsaie
machine learning systems

Sankar Raman Sathyamoorthy

€_7 SMILE Il H& =,
Q a INNOVATIVE ENGINEERING
| SE semcon °



QRTECH

INNOVATIVE ENGINEERING

N
N

an EMBRON Company ¢

;r../‘-\

\ehicle Perception &
Fault Tolerant ADAS




Fordonsstrategisl
Forskning och
Innovation

QRTECH @ VOILVO

INNOVATIVE ENGINEERING

semcon W Volvo Group

E = ) scann VOLWVO

:t:i)ﬁlm?l!ﬂIJMHBiﬁt“"ﬂﬂlll‘“l“&ml‘l.ﬂm

weenw

o

T -
Pl gs i e

g
-

g -y
é‘-’.‘

= Safety analysis and verification/validation of b
Machine Learning based systems !

Vinnova FFl, EMK, Machine Learning 2
2017-2019 '“
9 445 000 kr !

N
»

QRTECH an EMBRON Company ¢

INNOVATIVE ENGINEERING




Machine learning Software 2.0

 Humans curate data and specify goals

“a large portion of real-world problems * Backprop. and gradient descent produces
have the property that it is significantly

easier to collect the data than to explicitly
write the program” * Humans cannot comprehend mapping from

Andrej Karpathy Input to output
Director of Al at Tesla ﬁ

millions of weights in neural network

Software 1.0
e Humans write source code

e Other humans comprehend the source code

https://medium.com/@karpathy/software-2-0-a64152b37c35
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Machine learning
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Machine learning
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Verification and Validation — Challenges for Machine learning systems

Specification

Hazard analysis and risk
assessment (HARA)

|

Specification of safety goals

!

Specification of functional
safety requirements

|
Specification of technical Te St
safety requirements

e é
Specification of hardware Specification of software Testihg Verification of software
safety requirements safety requirements safety requirements

\ — /
verification '\, ) /

o
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o Architectural design
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Integration and testing

>
Desigr phase
verification

Unit design and  Tegide |
implementation

Test
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Unit testing

Design
Slide from Lars Tornberg, VCC
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Verification and Validation — Challenges for Machine learning systems

Hazard analysis and risk
assessment (HARA)
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Specification of safety goals
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Specification of functional
safety requirements
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Specification of technical
safety requirements
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Specification of hardware Specification of software
safety requirements safety requirements
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Testing

Testing

Verification of software
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Testing in Machine Learning:

* Estimate prediction/generalization performance
* Improve performance during model development.

Testing in Software Testing:

* Other attributes e.g.,

Correctness,
Robustness,
Reliability,
Safety
Interpretability

* Interaction with other system components

Using Machine Learning Safely in Automotive Software: An Assessment and Adaption of Software Process Requirements in ISO 26262

Slide from Lars Tornberg, VCC

QRTECH

INNOVATIVE ENGINEERING

an EMBRON Company &



Verification and Validation — Challenges for Machine learning systems
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Hazard analysis and risk
assessment (HARA)

}

Specification of safety goals

|

Specification of functional
safety requirements
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Specification of technical
safety requirements
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Specification of hardware Specification of software

verification
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Unit testing

Lack of specifications

Models are not rule based — learning from examples

Training set is not a substitute for specifications

Specification is general

Training data is a sample

Control distributional shift

Data is imbalanced w.r.t. to safety critical cases.

Specification break down is difficult

Important for the safety case, which traces the
model behavior to design and specification.

Using Machine Learning Safely in Automotive Software: An Assessment and Adaption of Software Process Requirements in ISO 26262

Slide from Lars Tornberg, VCC
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Verification and Validation — Challenges for Machine learning systems

Hazard analysis and risk
assessment (HARA)

}

Specification of safety goals

|

Specification of functional
safety requirements

!

Verification of software
safety requirements

How to control dependencies between models.

Quality assurance of predictions/outputs.

Specification of technical
safety requirements
Specification of hardware Specification of software Testing
safety requirements safety requirements
Desigr:'phase \ //“
VeSO % ‘,‘"
b g
L. i ©
o) Architectural design L Integration and testing a’:"
©
3 5 A | ,59"
T TESTETTTSE 5
verification IS
}Jnlt design apd Testing Unit testing
implementation
Using Machine Learning Safely in Automotive Software: An Assessment and Adaption of Software Process Requirements in ISO 26262
Slide from Lars Tornberg, VCC
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Data quality
Where should predictions be done?
Trade off between execution speed and e.g., model

accuracy
Explicit vs Implicit dependencies?
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Verification and Validation — Challenges for Machine learning systems

Hazard analysis and risk
assessment (HARA)
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Specification of functional
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How do we design more principled and general objective
functions to include e.g.,

Safety aspects,

. Fairness,

Interpretability,

Safe exploration

Mismatch between ideal specification (what we want the
model to do) and model behavior.

Using Machine Learning Safely in Automotive Software: An Assessment and Adaption of Software Process Requirements in ISO 26262

Slide from Lars Tornberg, VCC
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Hazard analysis and risk
assessment (HARA)

}

Specification of safety goals

Verification and Validation — Challenges for Machine learning systems

*  Model is stochastic
. Lack of test oracle
[ ]

!

Specification of functional

safety requirements
|
Specification of technical

safety requirements

Large input space
[ )
Specification of hardware

Unfeasable to cover all scenarios
. Lack of robustness makes this even more
demanding
. Models are shown to not be robust to small
perturbations
*  Feature extraction makes it hard to monitor input
Specification of software < Testing Verification of software data.
safety requirements safety requirements safety requirements
> \ ) . . ey
el b *  How to identify safety critical cases.
veritication
o “»
o : 7
3; Architectural design = Integration and testing il'? . Int tabilit / T bilit
> 3 nterpretability/ Traceability
S . .
% Design phase / 5 * Iswrong prediction = bug?
¥ verification b~ .
‘ *  Whereis bug?
Unit design and Testing] . 5 .
— I . Unit testing How to correct the bug?
*  Prevents the use of inspection and walkthroughs
Using Machine Learning Safely in Automotive Software: An Assessment and Adaption of Software Process Requirements in ISO 26262
Slide from Lars Tornberg, VCC
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System level
Hard to get error bounds on predictions for many

models

Verification and Validation — Challenges for Machine learning systems
Quality assurance of signals from individual models

Hazard analysis and risk
assessment (HARA)

}

Specification of safety goals

|

Specification of functional

Test under increasing complexity

Interpretability
Data dependencies

Future data — distributional shift

safety requirements
|
Specification of technical
safety requirements
R @ n
Specification of hardware Specification of software < Testing Verification of software
safety requirements safety requirements safety requirements
3 \ 4
Design'phase /
verification /
=] 1
L. i < Testing Z : @
Q Architectural design Integration and testing S
©
S > \_ 4 £ )
® Design. phase ” K
w verification IS
}Jnlt design apd Testing Unit testing
implementation
Using Machine Learning Safely in Automotive Software: An Assessment and Adaption of Software Process Requirements in ISO 26262
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Distributional shift

Concrete Problems in Al Safety

Dario Amodei* Chris Olah* Jacob Steinhardt Paul Christiano

(Google Brain Google Brain Stanford University UC Berkeley
John Schulman Dan Mané
OpenAl Google Brain

¢ Robustness to Distributional Shift: How do we ensure that the cleaning robot recognizes,
and behaves robustly, when in an environment different from its training environment? For
example, strategies it learned for cleaning an office might be dangerous on a factory workfloor.

arXiv:1606.06565
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Distributional shift

Training example

Example anomalies

VLR T .

d 3

¥
»f

Car, score — 0.998 Bike, score — 0.958 Person, score —0.93

Confidence from a deep learning model is not a good proxy for true
confidence!
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Distributional shift

Step 1: pick starting image (“sloth”) Step 2: pick target class (“race car”) Step 3: create adversarial image by adding
carefully chosen imperceptible noise

“sloth” “race car”
>99% confidence >99% confidence

Confidence from a deep learning model is not a good proxy for true
confidence!

https://medium.com/@deepmindsafetyresearch/building-safe-artificial-intelligence-52f5f75058f1

QRTECH an EMBRON Company &

INNOVATIVE ENGINEERING


https://medium.com/@deepmindsafetyresearch/building-safe-artificial-intelligence-52f5f75058f1

Verification and Validation — Challenges for Machine learning systems

Building safe artificial intelligence: Specification Robustness g | ASSuramce
. - the system) perturbations) system activity)

specification, robustness, and

assurance

Sep 27,2018 - 9 min read Bugs & inconsistencies Risk sensitivity Interpretability
Ambiguities Uncertainty estimates Behavioural screening
Side-effects Safety margins Activity traces
High-level specification languages Safe exploration Estimates of causal influence
Preference learning Cautious generalisation Machine theory of mind
Design protocols Verification Tripwires & honeypots
https://medium.com/@deepmindsafetyresearc Adversaries

h/building-safe-artificial-intelligence-

52f5f75058f1

Wireheading Instability Interruptibility
Delusions Error-correction Boxing
Metalearning and sub-agents Failsafe mechanisms Authorisation system
Detecting emergent behaviour Distributional shift Encryption

Graceful degradation Human override

Theory
(Modelling and understanding Al systems)
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https://medium.com/@deepmindsafetyresearch/building-safe-artificial-intelligence-52f5f75058f1

Safety cage

- -
Carnegie

Architecting A Safety Envelope System i,

® “Doer” subsystem Doer/Checker Pair
e Implements normal, untrusted functionality

170 Low SIL
|_
=)
Z
" ” ege i R
® “Checker” subsystem - Traditional SW o OUTPUTS
e Implements failsafes (safety functions) e SHUTDOMN: Wi
i
2 High SIL
® Checker entirely responsible for safety % gg?;';
e Doer can be at low Safety Integrity Level Envelope

e Checker must be at higher SIL Checker

(Also known as a “safety bag” approach)

© 2018 Philip Koopman 9

https://users.ece.cmu.edu/~koopman/pubs/koopmanl8_ waise_keynote_slides.pdf
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Safety cage

Al -
-) v MY e
Carnegie

Validating an Autonomous Vehicle Pipeline Ml

University

RS

TRAJECTORY VEHICLE

PERCEPTION P PLANNING EXECUTION CONTROL

v
ACTUATO

SENSORS
v

Machine Randomized Control Autonomy
Learning & Heuristic Systems Interface To
Based Algorithms Vehicle

Approaches = Control
= Run-Time Software =» Traditional
= ?2?2? Safety Envelopes  Validation Software
=» Doer/Checker =» Doer/Checker Validation
Architecture Architecture

Perception presents a uniquely difficult assurance challenge

© 2018 Philip Koopman 10

https://users.ece.cmu.edu/~koopman/pubs/koopman18_waise_keynote_slides.pdf
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SMILE Il — Use cases
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Safety cage with Semantic segmentation

 Mask R-CNN trained to detect cars, motorcycles
and trucks driving in a highway on a sunny day.

* Pretrained on COCO dataset

 Data generated from simulation platform: Pro-
SiVIC™ from ESI.

* Training set contains around 3000 of each car, truck
and motorcycles

» Safety cage applied by analyzing the neuronal
activations of the last fully connected layer of the
classifier inside Mask R-CNN

* The safety cage is not trained (like a neural
network).

* Inputs rejected by the safety cage can be stored
and used in further training to improve the Al

N
»
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Semantic segmentation — outlier data

Green mask: accepted by Safety cage
Red mask: rejected by Safety cage

e Example outlier scenario: Driving in an urban environment

N
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Semantic segmentation with safety cage — demo video

Green mask: accepted by Safety cage
https://youtu.be/M 1gD69-DTQ Red mask: rejected by Safety cage

Live version shown at VECS 2019 had DDS communication between simulator and the python code (NN + Safety cage)

QRTECH an EMBRON Company &
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https://youtu.be/M_1gD69-DTQ

Safety Cage for perception layer

Inlier data

QOutlier data

Slide from Lars Tornberg, VCC
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Safety Cage for perception layer
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Evaluation of safety cages

Towards Structured Evaluation of Deep Neural Performance Analysis of Out-of-Distribution
Network Supervisors Detection on Variedly Trained Neural Networks
Jens Henriksson*, Christian Berger!, Markus Borg?, Lars Tornberg?, Jens Henriksson*, Christian Berger!, Markus Borg?,
Cristofer Englund®, Sankar Raman Sathyamoorthy¥, Stig Ursing* Lars Tornberg®, Sankar Raman Sathyamoorthy, Cristofer Englund?
Supervisor performance on WGEG16 Supenvisor performance on VEG16
0.0210 4
; - | ® VGG1E W AsL + BL ® n VGG1E w/ AGL + Bl
Inlier — CIFAR10 DB757 & VGGLE W A&L + OM T @ VGGIE w/ A&L + OM
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. \ " VGG1E + BL - ’ ® VGG16 + BL
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o, ‘ 0.010 o
‘ E
& 0.800 1 . oo a “n
g o 2 o008 i N : -
E T 2
0.775 1 * | - : 'l 2
S SCRC - s » “* didy
0.750 4 [ ] ' 0,000 4 q L ' L .
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Accuracy (%) Accuracy (%)

BL = Base Line, OM = OpenMax, A = Data Augmentation, L = Learning Rate
Bendale, A. & Boult, T., Towards open set deep networks, CVPR, 2016
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SOTIF

Requirements Hazards & Harm
specs. Risks Ok?
I " l
Modify o Triggers Identify
specs. N ok? triggers
A | Y

Known
scenarios can be
covered?

Risk in real-life
Scenarios Ok?

Residual «— Prepare

risk

ok? Release

v |

Validation

Ok Risks

4

Unsafe Safe
Known ‘ 1
Unknown ‘ 4
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5 SMILE il

Specification

Hazard analysis and risk
assessment (HARA)

!

Specification of safety goals

!

Specification of functional
safety requirements

!

Specification of technical
safety requirements

/\

Specification of hardware
safety requirements

Specification of software

Test

Testihg

Verification of software

safety requirements

\

3
verification

Architectural design

1

safety requirements
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Design. phase
verification

Unit design and

implementation
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Integration and testing
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Unit testing

Design
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SMILE I

WP2: Architectural design
*  What components should be encapsulated?
* Sensor fusion (e.g., lidar, radar, and time series data from the engine)

* WP3: Safety strategy
* Safety cages in the light of the emerging standards ISO/PAS 21448 SOTIF and UL 4600
* How to act when the safety cage rejects input? (e.g., mitigation strategies, handover to driver, and graceful degradation)

* WP4: Safety-cage design and optimization
* Explore approaches to improve safety cage performance (e.g., Bayesian networks)
* Strategies to utilize data that was rejected by the safety cage. (e.g., collecting the data for retraining/model updates)

* WPS5: Verification & Validation of the safety cage
* Component level testing (e.g., building on the metrics developed in SMILE Il)
* System level testing both using simulators and real applications
* Demonstrator using Pro-SiVIC (Qrtech)
* Demonstrator implemented in car on public roads (VCC)
* Demonstrator implemented in truck in closed setting (AB Volvo)
* WP6: Novel test methods
* Evaluate feasibility of metamorphic testing, search-based testing, mutation testing, DNN coverage testing etc.
* Meta testing (i.e., testing the testing) using demonstrator implemented using Pro-SiVIC (RISE)
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