

COMPLEX PERFORMANCE ANALYSIS OF AUTOENCODER-BASED APPROACHES FOR ANOMALY DETECTION IN DRIVING Scenario Images

Vasilii Mosin – Industrial PhD student @ VCC & Chalmers | GU Darko Durisic – Solution Architect @ VCC Miroslaw Staron – Professor @ Chalmers | GU

SCSSS 2020: 8th Scandinavian Conference on System and Software Safety

Deep Learning Perception in Automotive

object detection

semantic segmentation

VOLVO

Distributional Shift Problem

VOLVO

Distributional Shift Problem

"Safety Cage" Architecture

Supervisor (anomaly detection) working principles

- Black-box (data-based, e.g. autoencoders)
- White-box (model-based, e.g. neuron activations)

Autoencoders

CHALMERS

ANA NE

GÖTEBORGS UNIVERSITET

Autoencoder-Based Anomaly Detection

Reconstruction error approach

Euclidean distance as anomaly score.

Original image

Reconstructed image

Reconstruction error image

Bottleneck-values approach

LocalOutlierFactor as anomaly score.

Images representations in 2D space

Research Questions

• RQ1: What is the performance of autoencoder-based approaches for anomaly detection in driving scenario images?

• *RQ2*: What is the robustness of autoencoder-based anomaly detection approaches to color changes in driving scenario images?

Anomalies in Driving Scenario Images

Context anomalies

Semantic anomalies

Experiments Setup (Data)

💮 GÖTEBORGS UNIVERSITET

- Pro-SiVic generated images
- Empty highway VS highway with cars (cars as anomalies)
- Consider 3 cases: original, modified (changing yellow colors to grey), and greyscale images.
- 256 training images (normal);
 100 normal testing images;
 31 anomalous testing images.
- Size: 192x320

CHALMERS

Normal image

Original

Anomalous image

Greyscale

Experiments Setup (Autoencoder)

- Encoder: 3 (conv + pool) + conv
- Decoder: 3 (deconv + ups)
 + conv
- Optimizer: Adadelta
- Loss: mean_squared_error
- Epochs: 1000
- Batch size: 10

Results (Anomaly Scores Distributions)

Results (Receiver Operating Characteristic)

The performance is better when ROC AUC is close to 1. FPR@100 – false positive rate at 100% true positive rate.

Conclusion

- Reconstruction error approach of autoencoder-based anomaly detection is sensitive to the colors of the anomalous objects (vehicles).
- Bottleneck-values approach of autoencoder-based anomaly detection is not sensitive to the colors of the anomalous objects (vehicles).
- In general, bottleneck-values approach is less sensitive to the color information in images compared to reconstruction error approach.
- Reconstruction error approach has shown high FRP@100 (more than 60% for all cases).
- Bottleneck-values approach has shown lower FPR@100 (less than 20% for original and modified images and less than 60% for greyscale images).
- Future research may include experiments with more complex autoencoders, using real driving scenario images, and considering different types of anomalous objects (e.g. pedestrians, animals, etc.).

vasilii.mosin@volvocars.com