
Aeronautics and Astronautics
MIT

The Need for a New Paradigm

In System Safety Engineering

Prof. Nancy G. Leveson

1

Copyright © 2023 by Nancy Leveson. All rights reserved.

2

General Definition of “Safety”

Accident = Mishap = Loss: Any undesired and
unplanned event that results in a loss

̶ Loss of human life or injury

̶ Property damage,

̶ Environmental pollution,

̶ Mission loss,

̶ Loss of protected information,

̶ Negative business impact (damage to reputation, etc.), etc.

Includes inadvertent and intentional losses (security)

3

Some Painful Truths

• Traditional safety and security techniques don’t work on today’s
systems

̶ Tomorrow will be worse

• They cannot be extended to make them work

• A paradigm change is needed to leap the hurdles we face

The first step in solving any problem is understanding it.

“It’s never what we don’t know that stops us.

It’s what we do know that just ain’t so.”

• Assume accidents caused by chains of failure events

• Forms the basis for most safety engineering and reliability
engineering analysis:

FTA, PRA, FMEA/FMECA, Event Trees, FHA, etc.

• Evaluate reliability of components separately and later combine
analysis results into a system reliability value

– Assumes losses caused by component failure,

– Assumes independence of failures

– Assumes randomness—do software and humans behave this way?

Traditional Approach to Safety Engineering

• Design (concentrate on dealing with component failure):

– Redundancy and barriers (to prevent failure propagation),

– High component integrity and overdesign,

– Fail-safe design,

– (humans) Operational procedures, checklists, training, ….

• Operations

– Focus on compliance

– Accident Analysis (mostly blamed on human operators)

Traditional Approach to Safety Engineering (1)

History of System Safety Engineering

1940 20101980 ???19901950 1960 1970 2000

FMEA FTA

HAZOP

ETA

➢ Introduction of computer control

➢ Exponential increases in complexity

➢ New technology

➢ Changes in human roles

Assume accidents
caused by

component
failures:

Problem is
component

reliability

2020

STPA/CAST

Assume
accidents

caused
by human

errors

19201850

Assume
accidents

caused
by lack of

design
protection

Use protection
devices

Reduce
human
errors

?????

What Failed Here?

• Navy aircraft were ferrying missiles from one location to another.

• One pilot executed a planned test by aiming at aircraft in front and
firing a dummy missile.

• Nobody involved knew that the software was designed to substitute
a different missile if the one that was commanded to be fired was
not in a good position.

• In this case, there was an antenna between the dummy missile and
the target so the software decided to fire a live missile located in a
different (better) position instead.

9

Warsaw A320 Accident

• Software protects against activating
thrust reversers when airborne

• Hydroplaning and other factors made the software think the plane
had not landed

• Pilots could not activate the thrust reversers and ran off end of
runway into a small hill.

10

Lesson Learned

• Accidents today do not just result from component failures.

• Need to consider design errors

11

Software has Revolutionized Engineering (1)

1. Software does not “fail”

+ =
General

Purpose

Machine

Software
Special

Purpose

Machine

Software is simply the design of a machine abstracted

from its physical realization

Software is pure design and designs do not “fail”

2. Software allows almost unlimited complexity (coupling)

Software engineering focuses on implementing the
requirements and validating it

• Ensure rigor placed on design and test

Autopilot

Expert Requirements Software

Engineer

Design

of

Autopilot

→ → →

SIL/LoR

13

The role of software in accidents almost always involves
flawed requirements

̶ Incomplete or wrong assumptions about operation of controlled
system or required operation of computer

̶ Unhandled controlled-system states and environmental conditions

• Level of rigor in producing the software design or DAL (design
assurance level) has almost nothing to do with system safety.

• The problem is context

Autopilot

Expert Requirements Software

Engineer

Design

of

Autopilot

→ → →

SIL/LoR

14

Is this knife safe?

15

Safety Depends on Context

16

Example: Safety Depends on Context

Ariane 4 IRS (Inertial Reference Software)

Ariane 5 IRS (reused same software)

Lesson Learned

• Software
̶ Contributes differently to accidents than hardware

• Does not “fail” but can contribute to unsafe system behavior
(including unsafe human behavior)

̶ Adds almost unlimited complexity but
• Cannot exhaustively test

• Is not by itself safe or unsafe

18

Software changes the role of humans in systems

Typical assumption is that operator error is cause of most
incidents and accidents

̶ So do something about operator involved (admonish, fire, retrain
them)

̶ Or do something about operators in general

• Marginalize them by putting in more automation

• Rigidify their work by creating more rules and procedures

“Cause” from the American Airlines B-757 accident report (in Cali,
Columbia):

“Failure of the flight crew to revert to basic radio navigation at
the time when the FMS-assisted navigation became
confusing and demanded an excessive workload in a critical
phase of flight.”

Another Accident Involving Thrust Reversers

• Tu-204, Moscow, 2012

• Red Wings Airlines Flight 9268

• The soft 1.12g touchdown made
runway contact a little later than
usual.

• With the crosswind, this meant
weight-on-wheels switches did
not activate and the thrust-
reverse system would not
deploy.

© Copyright John Thomas 2016

20

Another Accident Involving Thrust Reversers

• Pilots believe the thrust
reversers are deploying like they
always do. With the limited
runway space, they quickly
engage high engine power to
stop quicker. Instead this
accelerated the Tu-204 forwards,
eventually colliding with a
highway embankment.

© Copyright John Thomas 2016
21

Another Accident Involving Thrust Reversers

• Pilots believe the thrust
reversers are deploying like they
always do. With the limited
runway space, they quickly
engage high engine power to
stop quicker. Instead this
accelerates the Tu-204 forwards,
eventually colliding with a
highway embankment.

In complex systems, human and technical
considerations cannot be isolated

© Copyright John Thomas 2016

Human factors

concentrates on the

“screen out”

Hardware/Software

engineering

concentrates on the

“screen in”

23

Not enough attention on integrated

system as a whole

(e.g, mode confusion, situation

awareness errors, inconsistent

behavior, etc.

24

Easy to overlook the system problems when
break up system analysis problem

SW
Design

Operator

HW

Design

Analysis: “How can HW fail?”

Analysis: “How can the operator
deviate from intended/specified
procedures?”

Analysis: “How can SW
contribute to a loss”

New, unplanned interactions
in integrated system

25

Need to look at integrated system as a whole

Lesson Learned

• Cannot effectively reduce accidents without integrating
human/software/hardware engineering

26

STPA

Low

High

Concept Requirements Design Build Operate

C
o

s
t

o
f

F
ix

Attack/Accident

Response

System

Safety/Security

Requirements

Systems

Engineering

Cyber

Security/Safety

“Bolt-on”

Safety/Secure

Systems

Thinking

Build safety and security into

system from beginning

Lesson Learned

• Can no longer wait until design completed to analyze its
safety.

• Need to build safety into systems from the beginning

29

Focus on Identifying a Root or Probable Cause

• The cause of all accidents is not the events but why the events
occurred

• B737 MAX
Quote from Muilenberg (CEO of Boeing):

− “Accidents always involve a chain of events”

− “Pilots were in chain of events as was MCAS”

− “MCAS added to workload of pilots”

− “We can break chain of events that led to both crashes by
developing a software fix that would limit the potency of that
stabilization system”

• Is that really the “root” cause of the B737 MAX accidents?

• Are we missing deeper issues—why the events occurred—that
then are never eliminated?

Focus on Identifying a Root or Probable Cause

• While software needs to be fixed, are there not deeper causes
that also were involved?

− Impact of competitive pressures with Airbus A320neo on Boeing
management decision making?

− Was lack of redundancy in AOA sensor simply a random mistake of
a design engineer?

− What was the impact of certification procedures?

− Inadequate resources of FAA?

− Changes in regulatory policies and procedures that changed over
time to give Boeing more autonomy?

− Role of system engineering processes and procedures?

• Need to fix the deeper causes

Systemic Factors in Laboratory Data Errors

• Decentralized and missing oversight

• Inadequacies and gaps in standards

• Inaccurate perception of risks in use of laboratory data and use of
health IT

• Lack of systems view leading to unintended consequences

• Inadequate regulatory emphasis on safety of health IT

• Flawed communication and coordination (missing formal
communication channels, missing feedback and error reporting,
misidentification of patients, missing information)

Lesson Learned

• Need to look beyond events to prevent accidents

̶ Why did events occur?

̶ To learn, we need to look at:

• Conditions that lead to the events

• Systemic factors that influence almost everything but not
necessarily directly related (cannot just draw an arrow or
assume a “failure”)

• Cannot concentrate only on physical system
̶ Need to look at role of social/managerial factors in losses

33

The Problem

• Traditional safety approaches do not work on today’s systems

̶ Don’t handle complex systems, software, new roles for humans,
management, social systems

̶ Start too late – need a design first

̶ Hardware, humans, software all treated separately

• No way to extend them as the underlying assumptions do not fit
today’s systems

• We need a paradigm change

It’s still hungry … and I’ve been stuffing worms into it all day.

35

Two Approaches Being Taken Now

Pretend there is no problem Shoehorn new technology and new

levels of complexity into old methods

We need something new!

The Problem is Complexity

Ways to Cope with Complexity

• Analytic Decomposition

• Statistics

• Systems Theory

37

Physical/Functional: Separate into distinct components

C1

C3

C4

C2

C5

Analytic Decomposition (“Divide and Conquer”)

1. Divide system into separate parts

Behavior: Separate into events over time

E1 E2 E5E3 E4

Components interact

In direct ways

Each event is the direct

result of the preceding event

38

Analytic Decomposition (2)

2. Analyze/examine pieces separately and combine results

C1

C3

C4

C2

C5
E1 E2 E5E3 E4

▪ Assumes such separation does not distort phenomenon

✓ Each component or subsystem operates independently

✓ Components act the same when examined singly as when playing

their part in the whole

✓ Components/events not subject to feedback loops and non-linear

interactions

✓ Interactions can be examined pairwise

39

Typical Decomposition Approach (SAE ARP 4761)

40

First, decompose top-down into components

Then combine individual component analyses bottom up
(omit software and humans)

41

Limitations of Probabilistic Risk Assessment

• Failures of components must be independent

• Doesn’t work for non-failure accidents (caused by system design
errors and not component failures)

• Doesn’t work for software or new technology or new designs

• Doesn’t work for human errors in complex systems

• Unreliable results
̶ Two scientific evaluations (1980s and 2002)

̶ Both showed variance in results of 3-4 orders of magnitude

• Empirical results are terrible: All accidents I have seen had a PRA that
showed they could not happen!

Prevent failures

or errors

Treat Safety as a

Control Problem

Treat Safety as a

Reliability Problem

Enforce constraints on

behavior:
– components

– interactions among

components

43

Here comes the paradigm change!

Emergent properties
(arise from complex interactions)

Process

Process components interact in

direct and indirect ways

The whole is greater than

the sum of its parts

System Theory

44

Emergent properties
(arise from complex interactions)

Process

Process components interact in

direct and indirect ways

Safety and security are emergent properties

The whole is greater than

the sum of its parts

45

Controller
Controlling emergent properties

(e.g., enforcing safety constraints)

Process

Control Actions Feedback

Individual component behavior

Component interactions

Process components interact in

direct and indirect ways

46

A Broad View of “Control”

Component failures and unsafe interactions may be “controlled”
through design

(e.g., redundancy, interlocks, fail-safe design, …)

or through process
• Manufacturing processes and procedures

• Maintenance processes

• Operational processes

or through social controls
• Governmental or regulatory

• Culture

• Insurance

• Law and the courts

• Individual self-interest (incentive structure)

47

Controls/Controllers Enforce Constraints

• Aircraft must maintain sufficient lift to remain airborne

• Vehicles must maintain minimum separation

• Public health system must prevent exposure of public to
contaminated water, food products, and viruses

• Pressure in a offshore well must be controlled

• Integrity of hull must be maintained on a submarine

• Toxic chemicals/radiation must not be released from plant

• Workers must not be exposed to workplace hazards

48

These represent the system-level requirements

on the sociotechnical system

STAMP (System-Theoretic Accident Model and
Processes)

• A new, more powerful accident/loss causality model

• Based on systems theory, not reliability theory

• Treats accidents/losses as a dynamic control problem (vs. a failure
problem)

• Applies to very complex systems

• Includes

• Scenarios from traditional hazard analysis methods (failure events)

• Component interaction accidents

• Software and system design errors

• Human errors

• Entire socio-technical system (not just technical part)

Controlled Process

Process

Model

Control Actions

(via actuators)

Feedback

(via sensors)

Treating Safety as a Control Problem

• Controllers use a process model to
determine control actions

• Software/human related accidents
usually occur when the process
model is incorrect (inconsistent with
real state of process)

• Captures software errors, human
errors, flawed requirements …

Controller (Human, Automation)

50

Control

Algorithm

Warsaw (Reverse Thrusters)

51

Hazard: Inadequate aircraft

deceleration after landing

Aircraft

Pilot

Decision

Making

Process

Model

Software Controller

Control

Algorithm

Process

Model

Warsaw (Reverse Thrusters)

52

Hazard: Inadequate aircraft

deceleration after landing

Aircraft

Pilot

Decision

Making

Process

Model

Software Controller

Control

Algorithm

Process

Model

Feedback indicates
plane has not

landed

Warsaw (Reverse Thrusters)

53

Hazard: Inadequate aircraft

deceleration after landing

Aircraft

Pilot

Decision

Making

Process

Model

Software Controller

Control

Algorithm

Process

Model

Plane has not
landed

Feedback indicates
plane has not

landed

Warsaw (Reverse Thrusters)

54

Hazard: Inadequate aircraft

deceleration after landing

Aircraft

Pilot

Decision

Making

Process

Model

Software Controller

Control

Algorithm

Process

Model

Plane has
landed

Plane has not
landed

Feedback indicates
plane has not

landed

Warsaw (Reverse Thrusters)

55

Hazard: Inadequate aircraft

deceleration after landing

Aircraft

Pilot

Decision

Making

Process

Model

Software Controller

Control

Algorithm

Process

Model

Plane has
landed

Turn on reverse
thrusters

Plane has not
landed

Feedback indicates
plane has not

landed

Warsaw (Reverse Thrusters)

56

Hazard: Inadequate aircraft

deceleration after landing

Aircraft

Pilot

Decision

Making

Process

Model

Software Controller

Control

Algorithm

Process

Model

Plane has
landed

Turn on reverse
thrusters

Ignore
command

Plane has not
landed

Feedback indicates
plane has not

landed

Moscow (Reverse Thrusters)

57

Hazard: Inadequate Deceleration

after Landing

Aircraft

Pilot

Decision

Making

Process

Model

Software Controller

Control

Algorithm

Process

Model

Plane has
landed

Ignore reverse
thruster

command

Plane has not
landed

Feedback indicates
plane has not

landed

Engage reverse
thrust

Moscow (Reverse Thrusters)

58

Hazard: Inadequate Deceleration

after Landing

Aircraft

Pilot

Decision

Making

Process

Model

Software Controller

Control

Algorithm

Process

Model

Plane has
landed

Ignore reverse
thruster

command

Plane has not
landed

Feedback indicates
plane has not

landed

Reverse thrusters
will come onEngage reverse

thrust

Moscow (Reverse Thrusters)

59

Hazard: Inadequate Deceleration

after Landing

Aircraft

Pilot

Decision

Making

Process

Model

Software Controller

Control

Algorithm

Process

Model

Plane has
landed

Ignore reverse
thruster

command

Plane has not
landed

Feedback indicates
plane has not

landed

Reverse thrusters
will come on

Short runway,
need more

power to stop

Engage reverse
thrust

Moscow (Reverse Thrusters)

60

Hazard: Inadequate Deceleration

after Landing

Aircraft

Pilot

Decision

Making

Process

Model

Software Controller

Control

Algorithm

Process

Model

Plane has
landed

Ignore reverse
thruster

command

Plane has not
landed

Feedback indicates
plane has not

landed

Reverse thrusters
will come on

Short runway,
need more

power to stop

Engage reverse
thrust

Engage high
engine power

Moscow (Reverse Thrusters)

61

Hazard: Inadequate Deceleration

after Landing

Aircraft

Pilot

Decision

Making

Process

Model

Software Controller

Control

Algorithm

Process

Model

Plane has
landed

Ignore reverse
thruster

command

Plane has not
landed

Feedback indicates
plane has not

landed

Reverse thrusters
will come on

Short runway,
need more

power to stop

Engage reverse
thrust

Engage high
engine power

Engage high
engine power

Is The Approach Practical?

• Has been or is being used in a large variety of industries

• Automobiles (>80% use)

• Aircraft and Spacecraft (extensive use and growing)

• Defense systems (UAVs, AF GBSD, Army FVL, etc.)

• Ships/Marine

• Air Traffic Control

• Medical Devices and Hospital Safety

• Chemical plants

• Oil and Gas

• Nuclear and Electric Power

• Robotic Manufacturing / Workplace Safety

• 2,316 registrants (87 countries) for STAMP Workshop this year

• New international standards (autos, aircraft, defense) created or in
development.

62

Does it Work?

• Hundreds of evaluations and comparison with traditional
approaches used now

̶ Controlled scientific and empirical (in industry)

̶ All show STPA is better (identifies more critical requirements or design
flaws)

̶ All (that measured) show STPA requires orders of magnitude fewer
resources than traditional techniques

Example: STPA applied to one DoD program before
SolarWinds attack

64

Michael Bear (BAE), John Thomas (MIT), Col. William Young (USAF)

• Program that used STPA was protected from SolarWinds

• Vulnerabilities found by STPA Later exploited by SolarWinds attackers

Not exploited by SolarWinds attackers

More Information
• http://psas.scripts.mit.edu (papers, presentations from conferences,

tutorial slides, examples, etc.)

Free download:
http://mitpress.mit.edu/books/engineeri
ng-safer-world

In Japanese available 2024

Free download:
http://sunnyday.mit.edu/CAST-Handbook.pdf
(Korean, Japanese versions)

NANCY G. LEVESON

JOHN P. THOMAS

MARCH 2018

Free download:

http://psas.scripts.mit.edu

(300,000+ downloads since 2018.

Japanese, Chinese, and

Korean versions)

http://psas.scripts.mit.edu/
http://mitpress.mit.edu/books/engineering-safer-world
http://sunnyday.mit.edu/CAST-Handbook.pdf
http://psas.scripts.mit.edu/

New Textbook

Conclusions (1)

• Complexity is reaching a new level (tipping point)
• Old safety approaches becoming less effective

• New causes of losses appearing (especially related to use of software and
autonomy)

• Traditional analysis approaches do not provide the information
necessary to prevent losses in these systems

• Need a paradigm change to a “systems approach”
Change focus

Increase component reliability (prevent failures)

Enforce safe system behavior (constraints on system behavior)

67

Conclusions (2)

• Allows creating new analysis and
engineering approaches

̶ More powerful and inclusive

̶ Orders of magnitude less expensive

̶ Work on extremely complex systems (top-down system engineering)

̶ Help to design safety, security, and other properties in from the beginning

• New paradigm works much better than old techniques:

̶ Empirical evaluations and controlled studies show it finds more causal
scenarios (the “unknown unknowns”)

̶ Can be used before a detailed design exists to design safe and secure
systems from the beginning

