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General Definition of “Safety”

Accident = Mishap = Loss: Any undesired and 
unplanned event that results in a loss

̶ Loss of human life or injury

̶ Property damage, 

̶ Environmental pollution, 

̶ Mission loss, 

̶ Loss of protected information, 

̶ Negative business impact (damage to reputation, etc.), etc. 

Includes inadvertent and intentional losses (security)
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Some Painful Truths

• Traditional safety and security techniques don’t work on today’s 
systems

̶ Tomorrow will be worse

• They cannot be extended to make them work

• A paradigm change is needed to leap the hurdles we face



The first step in solving any problem is understanding it.

“It’s never what we don’t know that stops us. 

It’s what we do know that just ain’t so.”



• Assume accidents caused by chains of failure events

• Forms the basis for most safety engineering and reliability 
engineering analysis:

FTA, PRA, FMEA/FMECA, Event Trees, FHA, etc.

• Evaluate reliability of components separately and later combine 
analysis results into a system reliability value 

– Assumes losses caused by component failure, 

– Assumes independence of failures

– Assumes randomness—do software and humans behave this way? 

Traditional Approach to Safety Engineering



• Design (concentrate on dealing with component failure):

– Redundancy and barriers (to prevent failure propagation), 

– High component integrity and overdesign, 

– Fail-safe design, 

– (humans) Operational procedures, checklists, training, ….

• Operations

– Focus on compliance

– Accident Analysis (mostly blamed on human operators)

Traditional Approach to Safety Engineering (1)



History of System Safety Engineering
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What Failed Here?

• Navy aircraft were ferrying missiles from one location to another.

• One pilot executed a planned test by aiming at aircraft in front and 
firing a dummy missile. 

• Nobody involved knew that the software was designed to substitute 
a different missile if the one that was commanded to be fired was 
not in a good position. 

• In this case, there was an antenna between the dummy missile and 
the target so the software decided to fire a live missile located in a 
different (better) position instead.

9



Warsaw A320 Accident

• Software protects against activating 
thrust reversers when airborne

• Hydroplaning and other factors made the software think the plane 
had not landed

• Pilots could not activate the thrust reversers and ran off end of 
runway into a small hill.
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Lesson Learned

• Accidents today do not just result from component failures.

• Need to consider design errors
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Software has Revolutionized Engineering (1)

1. Software does not “fail”
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Software is simply the design of a machine abstracted 

from its physical realization

Software is pure design and designs do not “fail”

2. Software allows almost unlimited complexity (coupling)



Software engineering focuses on implementing the 
requirements and validating it

• Ensure rigor placed on design and test

Autopilot 
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The role of software in accidents almost always involves 
flawed requirements

̶ Incomplete or wrong assumptions about operation of controlled 
system or required operation of computer

̶ Unhandled controlled-system states and environmental conditions

• Level of rigor in producing the software design or DAL (design 
assurance level) has almost nothing to do with system safety.

• The problem is context

Autopilot 

Expert Requirements Software

Engineer

Design    

of 

Autopilot

→ → →

SIL/LoR

14



Is this knife safe?
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Safety Depends on Context
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Example: Safety Depends on Context

Ariane 4 IRS (Inertial Reference Software)

Ariane 5 IRS (reused same software)



Lesson Learned

• Software
̶ Contributes differently to accidents than hardware

• Does not “fail” but can contribute to unsafe system behavior 
(including unsafe human behavior)

̶ Adds almost unlimited complexity but
• Cannot exhaustively test

• Is not by itself safe or unsafe
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Software changes the role of humans in systems

Typical assumption is that operator error is cause of most
incidents and accidents

̶ So do something about operator involved (admonish, fire, retrain 
them) 

̶ Or do something about operators in general

• Marginalize them by putting in more automation

• Rigidify their work by creating more rules and procedures

“Cause” from the American Airlines B-757 accident report (in Cali, 
Columbia):

“Failure of the flight crew to revert to basic radio navigation at 
the time when the FMS-assisted navigation became 
confusing and demanded an excessive workload in a critical 
phase of flight.”



Another Accident Involving Thrust Reversers

• Tu-204, Moscow, 2012

• Red Wings Airlines Flight 9268

• The soft 1.12g touchdown made 
runway contact a little later than 
usual.

• With the crosswind, this meant 
weight-on-wheels switches did 
not activate and the thrust-
reverse system would not 
deploy.

© Copyright John Thomas 2016
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Another Accident Involving Thrust Reversers

• Pilots believe the thrust 
reversers are deploying like they 
always do. With the limited 
runway space, they quickly 
engage high engine power to 
stop quicker. Instead this 
accelerated the Tu-204 forwards, 
eventually colliding with a 
highway embankment.

© Copyright John Thomas 2016
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Another Accident Involving Thrust Reversers

• Pilots believe the thrust 
reversers are deploying like they 
always do. With the limited 
runway space, they quickly 
engage high engine power to 
stop quicker. Instead this 
accelerates the Tu-204 forwards, 
eventually colliding with a 
highway embankment.

In complex systems, human and technical 
considerations cannot be isolated

© Copyright John Thomas 2016



Human factors
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“screen out”
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Not enough attention on integrated 

system as a whole

(e.g, mode confusion, situation 

awareness errors, inconsistent 

behavior, etc.
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Easy to overlook the system problems when
break up system analysis problem

SW 
Design

Operator

HW 

Design

Analysis: “How can HW fail?”

Analysis: “How can the operator 
deviate from intended/specified 
procedures?”

Analysis: “How can SW 
contribute to a loss”

New, unplanned interactions 
in integrated system
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Need to look at integrated system as a whole 



Lesson Learned

• Cannot effectively reduce accidents without integrating 
human/software/hardware engineering
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STPA
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Lesson Learned

• Can no longer wait until design completed to analyze its 
safety.

• Need to build safety into systems from the beginning
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Focus on Identifying a Root or Probable Cause

• The cause of all accidents is not the events but why the events 
occurred 

• B737 MAX
Quote from Muilenberg (CEO of Boeing): 

− “Accidents always involve a chain of events”

− “Pilots were in chain of events as was MCAS”

− “MCAS added to workload of pilots”

− “We can break chain of events that led to both crashes by 
developing a software fix that would limit the potency of that 
stabilization system”

• Is that really the “root” cause of the B737 MAX accidents?

• Are we missing deeper issues—why the events occurred—that 
then are never eliminated?



Focus on Identifying a Root or Probable Cause

• While software needs to be fixed, are there not deeper causes 
that also were involved? 

− Impact of competitive pressures with Airbus A320neo on Boeing 
management decision making?

− Was lack of redundancy in AOA sensor simply a random mistake of 
a design engineer?

− What was the impact of certification procedures?

− Inadequate resources of FAA?

− Changes in regulatory policies and procedures that changed over 
time to give Boeing more autonomy? 

− Role of system engineering processes and procedures?

• Need to fix the deeper causes



Systemic Factors in Laboratory Data Errors

• Decentralized and missing oversight

• Inadequacies and gaps in standards

• Inaccurate perception of risks in use of laboratory data and use of 
health IT

• Lack of systems view leading to unintended consequences

• Inadequate regulatory emphasis on safety of health IT

• Flawed communication and coordination (missing formal 
communication channels, missing feedback and error reporting, 
misidentification of patients, missing information)



Lesson Learned

• Need to look beyond events to prevent accidents

̶ Why did events occur?

̶ To learn, we need to look at:

• Conditions that lead to the events

• Systemic factors that influence almost everything but not 
necessarily directly related (cannot just draw an arrow or 
assume a “failure”)

• Cannot concentrate only on physical system
̶ Need to look at role of social/managerial factors in losses
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The Problem

• Traditional safety approaches do not work on today’s systems

̶ Don’t handle complex systems, software, new roles for humans, 
management, social systems

̶ Start too late – need a design first

̶ Hardware, humans, software all treated separately

• No way to extend them as the underlying assumptions do not fit 
today’s systems

• We need a paradigm change



It’s still hungry … and I’ve been stuffing worms into it all day.
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Two Approaches Being Taken Now

Pretend there is no problem Shoehorn new technology and new 

levels of complexity into old methods

We need something new!



The Problem is Complexity

Ways to Cope with Complexity

• Analytic Decomposition

• Statistics

• Systems Theory

37



Physical/Functional: Separate into distinct components

C1

C3

C4

C2

C5

Analytic Decomposition (“Divide and Conquer”)

1. Divide system into separate parts

Behavior: Separate into events over time

E1 E2 E5E3 E4

Components interact

In direct ways

Each event is the direct 

result of the preceding event
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Analytic Decomposition (2)

2. Analyze/examine pieces separately and combine results

C1

C3

C4

C2

C5
E1 E2 E5E3 E4

▪ Assumes such separation does not distort phenomenon

✓ Each component or subsystem operates independently

✓ Components act the same when examined singly as when playing 

their part in the whole

✓ Components/events not subject to feedback loops and non-linear 

interactions

✓ Interactions can be examined pairwise
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Typical Decomposition Approach (SAE ARP 4761)

40

First, decompose top-down into components 



Then combine individual component analyses bottom up 
(omit software and humans)

41



Limitations of Probabilistic Risk Assessment

• Failures of components must be independent 

• Doesn’t work for non-failure accidents (caused by system design 
errors and not component failures)

• Doesn’t work for software or new technology or new designs

• Doesn’t work for human errors in complex systems

• Unreliable results
̶ Two scientific evaluations (1980s and 2002)

̶ Both showed variance in results of 3-4 orders of magnitude

• Empirical results are terrible: All accidents I have seen had a PRA that 
showed they could not happen!



Prevent failures

or errors

Treat Safety as a

Control Problem

Treat Safety as a

Reliability Problem

Enforce constraints on 

behavior:
– components 

– interactions among

components
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Emergent properties
(arise from complex interactions)

Process

Process components interact in 

direct and indirect ways

The whole is greater than

the sum of its parts

System Theory
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Emergent properties
(arise from complex interactions)

Process

Process components interact in 

direct and indirect ways

Safety and security are emergent properties

The whole is greater than

the sum of its parts
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Controller
Controlling emergent properties

(e.g., enforcing safety constraints)

Process

Control Actions Feedback

Individual component behavior

Component interactions

Process components interact in 

direct and indirect ways
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A Broad View of “Control”

Component failures and unsafe interactions may be “controlled” 
through design 

(e.g., redundancy, interlocks, fail-safe design, …)

or through process
• Manufacturing processes and procedures

• Maintenance processes

• Operational processes

or through social controls
• Governmental or regulatory

• Culture 

• Insurance

• Law and the courts

• Individual self-interest (incentive structure)
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Controls/Controllers Enforce Constraints

• Aircraft must maintain sufficient lift to remain airborne

• Vehicles must maintain minimum separation 

• Public health system must prevent exposure of public to 
contaminated water, food products, and viruses

• Pressure in a offshore well must be controlled

• Integrity of hull must be maintained on a submarine 

• Toxic chemicals/radiation must not be released from plant

• Workers must not be exposed to workplace hazards
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These represent the system-level requirements 

on the sociotechnical system



STAMP (System-Theoretic Accident Model and 
Processes)

• A new, more powerful accident/loss causality model

• Based on systems theory, not reliability theory

• Treats accidents/losses as a dynamic control problem (vs. a failure 
problem)

• Applies to very complex systems 

• Includes 

• Scenarios from traditional hazard analysis methods (failure events)

• Component interaction accidents

• Software and system design errors

• Human errors

• Entire socio-technical system (not just technical part)              



Controlled Process

Process

Model

Control Actions

(via actuators)

Feedback

(via sensors)

Treating Safety as a Control Problem

• Controllers use a process model to 
determine control actions

• Software/human related accidents 
usually occur when the process 
model is incorrect (inconsistent with 
real state of process)

• Captures software errors, human 
errors, flawed requirements …

Controller (Human, Automation)
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Warsaw (Reverse Thrusters) 
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Warsaw (Reverse Thrusters) 
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Warsaw (Reverse Thrusters) 
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Warsaw (Reverse Thrusters) 
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Warsaw (Reverse Thrusters) 
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Warsaw (Reverse Thrusters) 
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Moscow (Reverse Thrusters)
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Moscow (Reverse Thrusters)
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Moscow (Reverse Thrusters)
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Moscow (Reverse Thrusters)
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Moscow (Reverse Thrusters)
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Is The Approach Practical?

• Has been or is being used in a large variety of industries

• Automobiles (>80% use) 

• Aircraft and Spacecraft (extensive use and growing)

• Defense systems (UAVs, AF GBSD, Army FVL, etc.)

• Ships/Marine

• Air Traffic Control

• Medical Devices and Hospital Safety

• Chemical plants

• Oil and Gas

• Nuclear and Electric Power

• Robotic Manufacturing / Workplace Safety

• 2,316 registrants (87 countries) for STAMP Workshop this year

• New international standards (autos, aircraft, defense) created or in 
development.
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Does it Work?

• Hundreds of evaluations and comparison with traditional 
approaches used now 

̶ Controlled scientific and empirical (in industry)

̶ All show STPA is better (identifies more critical requirements or design 
flaws)

̶ All (that measured) show STPA requires orders of magnitude fewer 
resources than traditional techniques



Example: STPA applied to one DoD program before 
SolarWinds attack
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Michael Bear (BAE), John Thomas (MIT), Col. William Young (USAF)

• Program that used STPA was protected from SolarWinds

• Vulnerabilities found by STPA Later exploited by SolarWinds attackers

Not exploited by SolarWinds attackers



More Information
• http://psas.scripts.mit.edu (papers, presentations from conferences, 

tutorial slides, examples, etc.)

Free download: 
http://mitpress.mit.edu/books/engineeri
ng-safer-world

In Japanese available 2024

Free download: 
http://sunnyday.mit.edu/CAST-Handbook.pdf
(Korean, Japanese versions)

NANCY G. LEVESON

JOHN P. THOMAS

MARCH 2018

Free download: 

http://psas.scripts.mit.edu

(300,000+ downloads since 2018.

Japanese, Chinese, and 

Korean versions)

http://psas.scripts.mit.edu/
http://mitpress.mit.edu/books/engineering-safer-world
http://sunnyday.mit.edu/CAST-Handbook.pdf
http://psas.scripts.mit.edu/


New Textbook



Conclusions (1)

• Complexity is reaching a new level (tipping point)
• Old safety approaches becoming less effective

• New causes of losses appearing (especially related to use of software and 
autonomy)

• Traditional analysis approaches do not provide the information 
necessary to prevent losses in these systems

• Need a paradigm change to a “systems approach”
Change focus

Increase component reliability (prevent failures)

Enforce safe system behavior (constraints on system behavior)
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Conclusions (2)

• Allows creating new analysis and 
engineering approaches

̶ More powerful and inclusive 

̶ Orders of magnitude less expensive

̶ Work on extremely complex systems (top-down system engineering)

̶ Help to design safety, security, and other properties in from the beginning

• New paradigm works much better than old techniques:

̶ Empirical evaluations and controlled studies show it finds more causal 
scenarios (the “unknown unknowns”)

̶ Can be used before a detailed design exists to design safe and secure 
systems from the beginning


