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Maintenance Philosophies

Predictive/
Condition Based Maintenance

Reactive/corrective Preventive/scheduled

Timing Belt
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Fix it when 1t breaks Maintain it at regular Predict when it breaks and

intervals to prevent maintain it accordingly
breakdowns
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Key Advantages of Predictive Maintenance

Cost Savings:

e Reduce unnecessary maintenance
o Utilize component life effectively
Operational Efficiency:

e Minimizes unplanned stops

e Reduce downtime

Risk Reduction:

o Lowers the risk of catastrophic
failures by addressing issues
before they escalate.

MTBF statistical expected life

Potential safety risk

without prognostics ¢ Current
. service  Additional use gained with
S -7 life icc/di :
Design life of prognostics/diagnostics
component

Severe usage

T

2

Life consumption

Time-based service without
diagnostics/prognostics

N\

Mild usage

Time in operation

Source: Economic and Safety Benefits of Diagnostics & Prognostics (Romero et al. 1996) 00514

Accurate end-of-life prediction of components is essential for successful predictive maintenance!
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Data-driven maintenance prediction

. . Critical Failure Level {
e To be able to predict end-of-life, track a ool S | RS- .
degradation process (not just a single random Failure Threshold (conservative) — § g
event directly causing failure) '
e« maintenance = f(vehicle at time ) ETTF AR
: / :
. . Y /
o The health state is often not directly measurable, ¢ N
but sometimes possible to estimate from data & oneme TR 4 ,
I /
o [ . . I /
e A key difficulty: Uncertainties! § _.’ .
-7 EOL
Often difficult ' — .
Prediction time = Current time End of Life Time

-
|
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Use Case: Heavy-duty Truck Batteries

e Trucks must maintain high availability to ensure smooth transport operations.

e Unexpected breakdowns on the road can lead to major disruptions, including;:

e Costly repairs
e Delay deliveries with potential penalty fees
e Cargo damage resulting in financial losses

e Operational disruptions affecting work schedules and logistics planning

e Lead-acid starter battery issues are common causes of unplanned stops:

e Battery's Role: Powers the starter motor for the diesel engine and auxiliary
units (e.g., heating, kitchen appliances).

e Usage Variability: Battery load varies based on usage scenarios, such as
frequent stops for city trucks vs. extended operation for long-haul vehicles.
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Challenges of Battery Prognostics

e Vehicle configurations: Different cabins, auxiliary systems, drivelines, etc
e Operational variations: Start-stops frequency, overnight cabin heating, ...
 Environmental factors: Extreme temperatures accelerate battery wear.

e System dependencies: Degradation can result from other components, such as
overcharging by the generator.

‘~ P
.

Demonstrate how data can be used to predict battery lifespan and optimize replacements
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Data-Driven Survival Modeling for Predictive Maintenance

Individualized
Model Maintenance Policy
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Data Description and Information Content

Individualized
Model Maintenance Policy
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Data Overview for Battery Maintenance Modeling,

e Data sources

e operational data

e guarantee data

e workshop history data

e Data characteristics

~ 100,000 vehicles with

High censoring rate (= 80-90 %)
Good for Scania bad for modeling

~ 1,000,000 data readouts

Readouts now and then including
aggregated usage

Vehicle

10 -

New
Censoring time

Failure time
Data readouts

14

LINKOPING
IIQ" UNIVERSITY

Value

100

80

60 +-1-y----t---f--\f---- - fr koo

T e et T L W R o o

20 7

Operational data: snapshot

—_
-
-

-J
Ot

ot
-}

N
Ot

Accumulated Time

-}
|

| |
10 15 0 20 40

Time Bined Value

60 80 100

10



Data matrix where white areas indicate missing values

Missing
Values

Readout Characteristics

e Data readouts
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Vehicles ~100 000

e (Categorical/configuration

Variables ~ 50

o A few tloating point numbers

e 1D and 2D histograms

e About 500 variables stored

2D-histgram example

e Significant missing data rate about 40 percent

()]
o

e Important: Not possible to
estimate battery health-state
from measured signals!
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Percentage

-
o
!

o Extensive data on vehicle usage and
configuration, allowing for correlation with
component lifespan.

o
!
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Time or mileage based maintenance plans
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censored vehicles
failed vehicles
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Survival Models for Predictive Maintenance

Individualized
Maintenance Policy
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Modeling with static (or low-rate) data

Trad.: prognostics ~ trend analysis

Question:

How do you do trend analysis with few,
or even single, data readouts and you
can’t even reliably estimate the health?

(one) Answer:

Look in a database and find patterns
with similar usage and learn from their
experience

Method research: Find methods
e How to automate “look-up”

e How to determine “similar”

health index
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Survival models for predictive maintenance
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e How a system is used often has a big impact on when the system will fail
e It is often difficult/impossible to predict the exact time of failure

= Survival models describe the distribution of the failure time

= Problem: Estimate the survival function:

S(t | data) = P( survive until time t | data )

Survival function

0.8 1

o
o

_O
N
1

0.2 1

0.0 A

S| x)=P(T >t]x)

—— |deal model
Uncertain model

OK Failed

[

/

0.0

0.5 1.0 1. 2.0 2.5 3.0
Tinhe

Data-driven models

LINKOPING
IIQ" UNIVERSITY

15



Model performance - a high level perspective

Recurrent Neural Network Neural Network
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Individualized Age-based Replacement

Individualized
Model Maintenance Policy
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Maintenance planning

Consider a component in a truck that tends to fail after a certain mileage.

We want to decide as early as possible to repair/replace as late as possible
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Age replacement

e Th e replacement policy can be stated as : _— —
¢ age replacement policy can b Given a statistical description

follows: : :
W (survival model) of the failure
Replace the component with a new one times, the optimal replacement
when it reaches a specific age or when it ages can be determined

fails, whichever comes first.

< Horizon

rl Nl rz ~ ho

First component Preventive Failure Time
is installed replacement replacement
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Optimal replacement policies

e One simple cost-model is

w
o
|

o ;- cost of replacing a failed | )
25 Corrective replacementcost ~  _.--~
component g | \\ ,,,,,
O - - -
. ol & - avings _
e C,-cost of a preventive %g: I .- > > <
replacement oI PP Optimal replocement cost
. () ‘— [ I I I I I | |
o Typlcally Cf S Cp 0 0.5 1 1.5 2 2.5 3 3.5 4
(otherwise, run to failure is the . . I . . . l .
optimal) > K I I | l I I
o 06 ;s | | | | | |
e Minimize the expected 2 'i' R :/"”l """" sl
. . . O 0.4 ;
maintenance cost over a finite . K , : : | : : |
horizon. g0z /S I I I I I I I
/ | | | | | | |
0L I | I I 1 | I I 1 | 1 | I I I
C — E (Cfo + Cpr> 0 0.5 1 1.5 Horiz.'CZ)n (th) 2.5 3 3.5 4
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Takeaways

Predictive maintenance: Cost-efficient, reliable operations via
data-driven insights.

Survival modeling: Tackles uncertainty and limited
measurements effectively.

. . , Python package for
Individualized age-based replacement: Reduces downtime, and survival modelling

optimizes resource use.

Truck batteries: Highlight challenges of diverse configurations
and incomplete data.

SCANITA component X dataset: Real-world anonymized open [=]! Y
dataset similar to the battery dataset. SCANIA Component X
Dataset
| KT Ji






