

The project is supported by the Chips Joint Undertaking and its members, including the top-up funding by Sweden, Czechia, Finland, Ireland, Italy, Latvia, Netherlands, Norway, Poland, Spain.

Project funded by

Schweizerische Eidgenossenschaft Confédération suisse Confederazione Svizzera Confederaziun svizza Federal Department of Economic Affairs, Education and Research EAER State Secretariat for Education, Research and Innovation SERI

PURPOSE

 Structure a safety case for semi-autonomous forestry machinery, focused on a human detection system

• Demonstrate how ISO 21448 (SOTIF¹) can be adapted to the conditions and regulations of off-road forestry

• SOTIF aims to show that residual risk stays below acceptable levels, despite perception errors, sensor degradation, or edge-case environments

¹ Safety of the Intended Functionality

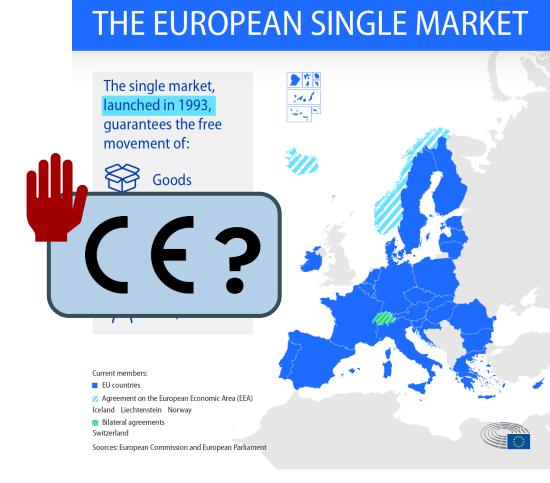
OUTLINE

REGULATORY CONTEXT AND CHALLENGES

ROLE OF THE SAFETY SYSTEM IN AUTONOMY

SOTIF PROCESS FOR FOREST MACHINERY

REAL WORLD EXPERIMENTS AND COLLABORATIVE SYSTEM SAFETY



REGULATORY CONTEXT

- Autonomous forestry machinery must satisfy Regulation (EU) 2023/1230
- The regulation anticipates a greater role for software and sensors in decision-making
- Unlike how SOTIF complements ISO 26262¹
 in automotive, mobile machinery lacks
 harmonised EU standards for intended
 functionality

REGULATORY CHALLENGES

- Existing machinery standards (ISO 12100¹, ISO 13849²) offer limited guidance on probabilistic sensor performance, runtime monitoring, or on perception faults
 - > Conceived for deterministic mechanical and electrical failures
- As reliance on CV³, LiDAR⁴, and AI grows, standards must evolve to include probabilistic metrics, SOTIF-style edge case analysis, and runtime monitoring for early fault detection

Computer Vision
 Light detection and ranging

AUTONOMOUS MOBILE MACHINERY

• Use case: Shuttle transports logs from a harvester along pre-mapped forest roads to drop-off point (loading/unloading handled by external machinery)

 Supervisory staff receive live telemetry and video—can trigger human override or safe state

- Hazard = Humans can get run over
 - > Need a safety-critical system that can detect people

ENVIRONMENTAL CHALLENGES

• Complex and unpredictable environment: Variable surface quality, steep gradients, rapidly changing light conditions, heavy occlusion ...

• People may enter the machine's workspace unexpectedly, linger in sensor blind spots or alter their movement signature

 The safety system must detect people reliably across a broad ODD¹ and execute safe-state transitions under degraded perception

SAFETY AROUND THE FORESTRY SHUTTLE

- Hazard zone: Shuttle's maximum stopping distance plus a safety margin
- Active/passive measures:
 - Geofenced route enforcement
 - Remote-supervision heartbeats
 - Audible & visible warning signals
 - Safety system for detecting people
- Any safety trigger occurrence (e.g. an ODD violation such as heavy occlusion) engages the "safe state"

SOTIF ADAPTATION CHALLENGES

- Transferring SOTIF from the well-regulated, data-rich context of road vehicles to off-road forestry machinery offers both alignment and challenge:
 - + Increased reliance on CV¹, LiDAR, and ML-technologies whose failure modes and performance metrics echo those found in ADAS²
 - Forest environments differ in speed, terrain, lighting, and data availability, making automotive risk principles (ALARP³, PRB⁴) harder to quantify
- Big advantages: Slower speed (10km/h) + Can stop at any danger

¹ Computer Vision

² Advanced Driver Assistance Systems

SPECIFICATION AND DESIGN (CLAUSE 5)

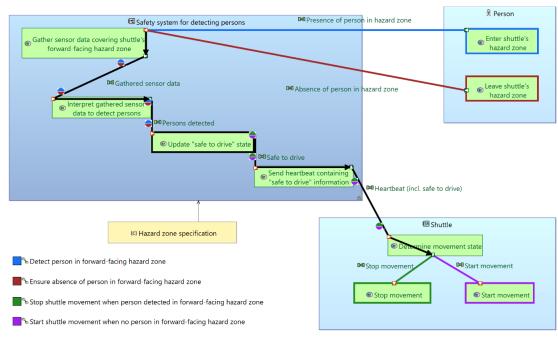
• Requires capturing the intended functionality in a detailed specification

Narrowed case study:

(safety) System comprises a front RGB-D¹ camera feeding point-cloud and intensity data into a CNN² based perception pipeline in a constrained ODD³

Source: traxxas.com/88086-84-trx-6flatbed-hauler-winch

- Control authority strategy: "Fail-stop"
 - → Contrasts with automotive SOTIF approaches

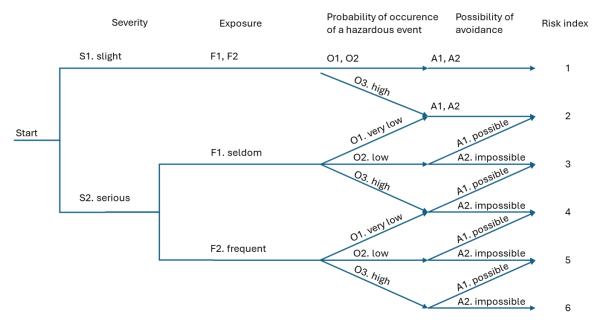

SPECIFICATION AND DESIGN (CLAUSE 5)

Design considerations must be documented and maintained as the SOTIF

analysis evolves

• Employed MBSE¹ (Capella), which structures the specification across four abstraction layers: Operational, System, Logical, Physical

 Although not a SOTIF requirement, MBSE enables traceability from high-level safety goals to low-level software and hardware components


System Architecture

HAZARD ANALYSIS (CLAUSE 6)

- SOTIF suggests adopting ISO 26262-3 (HARA¹)
- However, mobile machinery can instead leverage ISO 12100² and ISO/TR 14121-2³ to assess the risk-driving parameters:
 - Severity (S)
 - Frequency of exposure (F)
 - Occurrence (O)
 - Avoidance (A)

ISO/TR 14121's risk graph

¹ Hazard Analysis and Risk Assessment

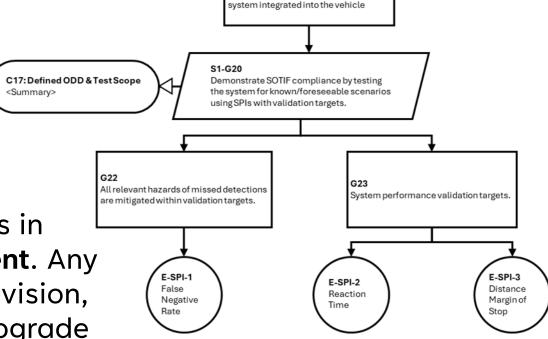
² ISO 12100: Risk assessment and risk reduction

ACCEPTANCE CRITERIA (CLAUSE 6)

- For automotive, SOTIF suggests defining acceptance criteria by applying:
 - GAMAB Guidelines for the Acceptability of Motorized Automobile Behaviour
 - PRB Positive Risk Balance
 - ALARP As Low As Reasonably Practicable
 - MEM Manageable Exposure Metric
- However, due to the scarcity of large-scale forestry accident statistics, other ways to define acceptance criteria are needed
- One option is to use ISO 13849-1¹ performance levels for average probability of dangerous failure per hour ...

ACCEPTANCE CRITERIA (CLAUSE 6)

- ... together with UL 4600¹-style **Safety Performance Indicators (SPI)** to support continuous safety monitoring and define acceptable hazard rates (e.g. "undetected-person events per x km")
- Each SPI serves as a validation target for simulations, test-track trials, and field monitoring—providing evidence that the acceptance criteria are met
- Linking real-world data, SPI:s and safety arguments enables continuous
 SOTIF validation throughout a system's operational life



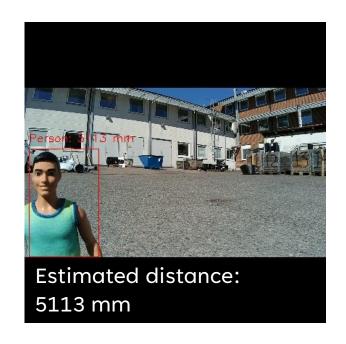
SOTIF ARGUMENT USING GOAL STRUCTURING NOTATION (GSN)

• Top claim (G1): "The absence of unreasonable risk due to hazards associated with the intended functionality or its reasonably foreseeable misuse has been achieved"

• UL 4600¹-style SPI:s² supports residual risk arguments by feeding evidence into relevant safety goals

 Linking SPI:s to acceptance thresholds in GSN creates a "living" safety argument. Any jeopardized claim triggers a design revision, ODD tightening, or countermeasure upgrade

The verification results demonstrate the robustness and the controllability of the


¹ UL 4600: Standard for Evaluation of Autonomous Products

² Safety Performance Indicator

MODEL-SCALE PROTOTYPING (ISO 21448, TABLE 10-G)

- Not intended to provide reliable performance figures, nor fulfil actual SOTIF compliance standards
- Show how real-world experiments can be linked to a GSN¹ safety argument via SPI:s² (e.g. false negative rate, distance estimation error, reaction time delay)

 Real-world tests show how easily risks emerge (sensor anomalies, occlusion effects, light failures) which are complex to mitigate in subsequent SOTIF cycles

¹ Goal Structuring Notation

² Safety Performance Indicator

COLLABORATIVE SUPERVISION

- Can assume ground-only sensing will have shortcomings: branches covering sensors, trees, slopes, boulders, etc.
- UAS¹ with RGB & thermal payload field tested as on-demand aerial sensors, to spot hidden personnel and obstacles
- This collaborative concept remains at the feasibility-investigation stage (putting safety-critical functionality on a drone is a project in itself)

CONCLUSIONS

 THE BIG NEWS: Adopting SOTIF for machinery is pretty straightforward (one big advantage over automotive: Can brake at any danger)

 Violating SPIs linked to validation targets in the safety argument can trigger risk mitigating iterations—even after deployment

 Unresolved: SOTIF acceptance criteria like "performs as an exemplary human driver" require extensive data—available in automotive, but lacking for machinery

Generated using FLUX1.1

QUESTIONS?

Aria Mirzai

aria.mirzai@ri.se

(company profile)

