Al-enabled DevSateOps for
Autonomous Driving Software

Ali Nouri

CHALMERS

ASSERTED - Assuring Safety for Rapid and Continuous Deployment for AD

CHALMERS

UNIVERSITY OF TECHNOLOGY

(/> zenseact \VAVANS ol

Diarienummer: 2021-02585
2025-09-10 Al-enabled DevSafeOps for Autonomous Driving Software 2

Goal

2025-09-10 Al-enabled DevSafeOps for Autonomous Driving Software

o
* G
i -
n b
(Q\ .’71/

Feature
expanded
Software

Unknown Scenario
Software issue

@@Dl@y

1S
Safe ©
> Dev

7 et

(@)
ps0d

Software

Design

2025-09-10 Al-enabled D evSafeOps for Autonomous Driving Software

CH2: Requirement updates
CH1: Safety and software workflow separation

Ah- &

CH9: Change impact analysis and tailoring

CH11: Change in one

domain affects others

CH3: Safety analysis methods

CH4: Software architecture CH10: Tooling

Dev Safety
Attifacts

UO,IJE.Ing

CHSB: Certification and assessment

CHY7: Safety argumentation CHG6: Operation Phase

CHS35: Verification and validation

2025-09-10 Al-enabled D evSafeOps for Autonomous Driving Software

CH2 Contentslts mvalable o
SOFTWARE

The Journal of Systems & Software -

journal homepage:

The DevSafeOps dilemm:

a: A systematic literature review on rapidity in safe

autonomous driving development and operation

Ali Nouri +, Beatriz Cabrero-Daniel , Fredrik Térner*

, Christian Berger*

nd
ng
idents, which

lopment, deployment, and m

meant to identify, analyse, and synthes

in autonomous driving de

Introduction

Autificial Intelligence (AI) has seen widespread adoption in vari-
past decade, including the automotive industry.

Driving mm and Aj\-anced Driver Assistance Systems

in the 1980s ((2) and
been local experiments; however recent loss events highlight
allenges. For instance, in a re ap involving

According to the investigation report (| awye 1), the cause
was neither hardware nor software failure. The AD perception detected
bath the pedestrian and the adjacent vehiele. Weak
ong with an inaceurate post-c

to nearby incidents
ges highii

model, are some of the technical issues and challe
Koopman (Kany Mor

considered a potential s o

scenarios (Koopman, 2024). Thi

o complex
t the need for novel

Editor: Dr. Daria Di Nucci.
Corresponding author at: Chalmers Univers

E-mail address: (A, Nourd,
MENT ON CRUISE LL SUSPENSION, nce

sed form 15 April 202

se a broad range of

aviour to similar unforeseen,
Releasing th
back strategi
deplo;
d example led t0 the immediate rer
lifornia Department of Maotor Vehicles (DMV}

ing permits by the €
dustry necessitales

he innovation rapidity in the automotive in
lopment and integration appro-

aim at function h
experience after gn iteration (Goog ih). Hence, DevOps
le continuous loops of monitoring and softw
litates the expansion of the Operational De:
crucial for maintaining the
anomalies, and impr
ulation update:

has the potenti

Domain (ODD). Additi

into standard
8800 (Safety and Artificial Intelligence) and ISC
Automated Driving Systems)

ety
as ISO 26262 150 21
ulations such

of Technology, Department of Computer §.

CHS5: o 11l
utho she: r Inc. This is an apen access article under

2025-09-10

C

Safety argumentation

separation

tailoring

CHG6: Operation Phase

UO,UEJng

Welcome Your New Al Teammate:
On Safety Analysis by Leashing Large Language
Models

Ali Nouri Beatriz Cabrero-Daniel Fredrik Térner
Volvo Cars & University of Gothenburg, Volva Cars,
Chalmers University of Technology Department of Computer Science Gothenburg, Sweden
Gothenburg, Sweden Gothenburg, Sweden fredrik.torner@volvocars.com
ali.nouri@volvocars.com beatriz.cabrero-daniel@gu.se

Hakan Sivencrona
Zenseact
Gothenburg, Sweden

Christian Berger
University of Gothenburg,
Department of Computer Science

hakan.siven:

Abstract

DevOps is a necessity in many industries, including the de-
velopment of Autonemous Vehicles. In those settings, there
are iterative activities that reduce the speed of SafetyOps
cyeles. One of these activities is “Hazard Analysis & Risk
Assessment” (HARA), which is an essential step to start the
safety requirements specification. As a potential approach to
increase the speed of this step in SafetyOps, we have delved
into the capabilities of Large Language Models (LLMs). Our
objective is to systematically assess their potential for ap-
plication in the field of safety engineering. To that end, we
propose a framework to support a higher degree of automa-
tion of HARA with LLMs. Despite our endeavors to automate
as much of the process as possible, expert review remains
crucial to ensure the validity and correctness of the analysis
results, with necessary modifications made accordingly.

CCS Concepts: » Software and its engineering — Soft-
ware verification and validation; » General and refer-
ence — Verification; « C -
Natural language processing; - Computer systems or-

=5 Dep and lerant systems and

networks.

Permission to make digital or hard copies of all or part of this work for
personal ar classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copics bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to past on servers or to redistribute to lsts, requires prior specific
‘permission and/or a fec. Request org,

g Sweden
christian berger@gu.se

Keywords: Hazard Analysis Risk Assessment, Autonomous

Vehicles, DevOps, Safety, Large Language Model, Prompt

Engineering, LLM, ChatGPT

ACM Reference Format:

Ali Nouri, Beatriz Cabrero-Daniel, Fredrik Torner, Hikan Siven-

erona, and Christian B e 2024, Welcome Your New Al Team-
shing Large Language Models

In Conference on Alﬁwmn.@ Software Engineering for Al (CAI

2024), April 14-15, 2024, Lisbon, Portugal. ACM, New York, NY, USA

6 pages. https/doi.org/10.1145/3644815.3644953

1 Introduction

The safety analysis of Autonomous Driving (AD) func-
tions is crucial for engineers to identify hazardous events,
assess their risks, and determine their root causes. Ensuring
the safety of such functions often relies on iterative natu-
ral language (NL)-based activities, one of which is safety
analysis. Artificial Intelligence (AI}-based tools capable of
processing NL can be used to increase the efficiency and
speed of these activities. One of the most promising toals is
Large Language Model (LLM).

Safety analysis is, however, not trivial as it consists of vari-
ous activities such as identification of failure modes, and their
effect in specific situations, which aim to mitigate or avoid
unreasonable risks. Standards such as 1S0 26262 [1] or 1SO
21448 2], and regulations like UNECE R157 (ALKS) [3] often
propose or mandate activities such as Hazard Analysis Risk
Assessment (HARA) and System Theoretic Process Analysis
(STPA) [4] T'hew ;;mdes are used when specifying the safety

or strategies.

HARA isa wcllrknuwn and usually required safety anal-

CAIN 2024, April 14-15, 2024, Lisbon, Portugal
© 2024 Copyright held by the awner/author(s). Publication rights licensed
1o ACM.

ACM ISBN 979-8-4007-0591-5/24/04...$15.00
ttps://doi.org/10.1145/3644815. 3644953

ysis for tive functions, such as AD. The aim of this
activity is to identify the hazardous events, categorize them,
and to specify safety goals to prevent or mitigate them. Safety
goals are top-level (i.e., vehicle-level) safety requirements
that are then used in other safety activities. Together, these

2025-09-10 Al-enabled D evSafeOps for Autonomous Driving Software

Engineering Safety Requirements for Autonomous
Driving with Large Language Models

Ali Nouri Beatriz Cabrero-Daniel Fredrik Térner
Volvo Cars & University of Gothenburg Volvo Cars
Chalmers University of Technology ~ Department of Computer Science and Engineering Gothenburg, Sweden
Gothenburg, Sweden Gothenburg, Sweden fredrik torner @ volvocars.com
ali.nouri @volvocars.com beatriz.cabrero-daniel @gu.se

Hikan Sivencrona
Zenseact

Christian Berger
University of Gothenburg

Gothenburg, Sweden Department of Computer Science and Engineering

hakan.sivencrona@zenseact.com

Abstract—Changes and updates in the requirement artifacts,
which can be frequent in the automotive domain, are a chal-
|u-.;. for SafetyOps. Large Language Models (LLMs), with

ir impressive natural language understanding and generating
capammm can play a key role in automatically
decomposing requirements after cach update, In this study, we
propose a prototype of a pipeline of prompts and LLMs that
receives an item definition and outputs solutions in the form of
safety requirements. This pipeline also performs a review of the
requirement dataset and identifies redundant or cunlmdlclorv

Gothenburg, Sweden
christian.berger@gu.se

associated with a high risk that will be verified and validated
at different stages of the project.

However, function descriptions, operational environments,
and regulations in the automotive domain rapidly change.
Hence, a company-specific DevOps cycle [3]including HARA
needs to be repeated iteratively each time, when a new
hazard or scenario is identified to potentially specify new
relevant safety requirements [41, An important ingredient for

requirements. We first identified the necessa
for performing HARA and then defined tests to assess an
LLM's capability in meeting these criteria. We used design
science with multiple iterations and let experts from different
companies evaluate each cycle quantitatively and qualitatively.
Finally, the prototype was implemented at a case company and
the responsible team evaluated its efficiency.
Index Terms—Requirement Engineering, Hazard Anal

Risk Assessment, Autonomous Vehicles, DevOps, Safety, Large
Language Model, Prompt Engineering, LLM, ChatG

1. INTRODUCTION

Software for Autonomous Driving (AD) is complex and
ensuring its safety is critical. It must be assessed throughout
the many sub-systems and sub-components that make up the
desired AD behaviour, rendering it a difficult and complex
task itself. Moreover, the complexity of the environment in
which AD systems operate, and the possible malfunctions
when interacting with other traffic agents lead to an almost
infinite exploration space for potential issues.

Techniques to engineer and maintain requirements for such
complex systems are commonplace in industrial setups. An
example is Hazard Analysis and Risk Assessment (HARA),
based on standards like ISO 26262 [1] and ISO 21448 [2], is an
example to mitigate such issues to identify possible hazardous
events and to assess their risk in a systematic way. Various
strategies are used to specify safety requirements for events

Funded by Sweden’s Innovation Agency, Diarienummer: 2021-02585

HARA is about possible hazards,
which requires imagination and creativity. Recent technolog-
ical successes in Al such as LLMs might be able to assist
engineers when brainstorming.

Our research goal is to design an LLM-based prototype
capable of effectively supporting human engineers to specify
safety requirements as needed for HARA in the context of
complex automotive functions like AD. The design of the
prototype was done in cycles: Firstly, identifying the LLM’s
limitations, followed by focusing on the task breakdown and
prompt engineering, and finally evaluating the results in a real-
world industrial context. We aim at answering the following
research questions:

RQ! What are the limitations of using LLMs for specifying
safety requirements for AD functions?

RQ2 What is the task breakdown to enhance the LLMs’
performance in specifying safety requirements using
HARA?

RQ3 How can prompt engincering enhance the LLMs’ perfor-
mance in specifying safety requirements for AD func-
tions?

Our observations indicate that LLMs have the potential to
effectively and efficiently specify safety requirements for AD
functions.The remainder of the paper is structured as follows:
Sec. 111 presents the methodology used to iteratively improve
the LLM-based prototype. IV to VI discuss and justify the
main design changes based on the evaluations of the generated
artifacts. Sec. VII provides an overview of the main design

Designed Pipeline of Prompts

Promps Hasordmas | roai ldontlewive

Context:

Eg. Provess, Few Shot bearning

Task Description
Assumptions
Format

Relation to
Prompts:

Io

Company Malfunctions Company Scenario
Catalogue Catalogue

Hazardous Event Igentiﬁer

and

Hazardous Events

Hazardous Event
Identifier

Seve'ritv Identifier

Safety Goal
Specifier ’ .

t%’ Safety Requirements

Core Scenario
Generator

Malfunction
Generator
¥

Malfunctions Core Scenarios

Combination of All
Malfunctions &
Core Scenarios

Legacy Safety
Ggal Finder
L

i [

tput of Prompt 1
Output of Prompt 2
Input to Prompt
nput to Prompt 3
3,and 5

Output of Prompt
utput of Prompt 4
Input to Prompt
Internal Input to Prompt 3 Input to Prompt 5
4,5,6,and 7

ew Four Safety
Controll ASIL
Goals

Output of Prompt 3

Redundant
afety Goals

Output of
Prompt 5

Output of
Prompt 6

Not in the scope

Evaluation: Experts Review Results]__é

Root cause Sample review comment

Scenarios CR3: “The detailed scenarios are too detailed, which results in very specialized scenarios while excluding many other scenarios
and also a risk of artificially lowering of E.”

CR3: (ID 50) “Ensure consistency: In detailed scenario there is a “truck approaching from the left” and in the severity rationale
the truck is “a large stationary object”, this is inconsistent.”

VR2: (ID 22) “Better to use VRU instead of Pedestrian in order to cover wider range of unprotected road users”

CR2: (ID 51, 77, 91) “The scenario is too unclear to be able to formulate a valid hazardous event”

Hazardous event CR2: (ID 19, 38, 25, 111) “The Hazardous event does not correlate with the malfunctioning behaviour in the described scenario”
Scenario VRS: “ ... difficult to determine completeness. Was a systematic approach applied? ... ”

Completeness VR3: “Have we covered the sharp turns, when commission has happened. That might lead to lateral instability.”

Severity CR3: “Not enough rationale provided for the stated S. Many assumptions made without proper rationales.”

Identification VRS: (ID 17) “CAEM doesn’t seem to be limited in speed. How was S2 determined, vehicle speed could have been 130 kph? ...”
CR3: (ID 77, and 196) “ In severity rationale it is stated ‘max allowed speed’ in ID 77 and ‘maximum allowed speed’ in ID 196.
This is not defined and if there is an upper limit of the host vehicle speed for CAEM this could be a safety mechanism.”

Safety Goals VRE: “Some safety goals have large overlap, ... Consider generalizing”

Formulation VRS5: “Safety goals do not need to explain why they exist, like “... to prevent unnecessary lane changes”. ... specify the goal, such
as “CAEM shall not cause lane departure unless to avoid collision”. ™

CR3: “Ensure unambiguous safety goals: The safety goals contains a lot of undefined parts.”

VR6: “Vicinity need to be precise. The invitation shall be in in case the collision is imminent in-front. ...”

VRI1: (ID 22, 23, and 25) “Safety Goal 23 is more general and it includes Safety Goal 22. Safety Goal 25 is similar to Safety
Goal 237, “Many safety goals are referring to same thing but different phrasing. ”

VR2: (ID 22) “when necessary” is vague and ambiguous.”

Evaluation: Interview Results

@ Not fulfilled systematically in all rows of HARA 3 Fulfilled in most of the rows of HARA

Not fulfilled in most of the rows of HARA

g. At least asafety goal for each hazardous events

d. Excluded safety > h. Safety goal
mechanisms /covering hazardous
event

a. Identified all f. Consistency

identified

failure modes in HARA

results

i. Safety goals .) ’ ssigned
correctly severities
formulated / rational

j- HARA FOlltl‘ib“tillg ~_¢. Hazardous events
to functional safety correctly formulated

b. Identified all relevant hazardous

Al-enabled D evSafeOps for Autonomous Driving Software

On Simulation-Guided LLM-based Code Generation
for Safe Autonomous Driving Software

Ali Nouri 2, Johan Andersson ?, Kailash De Jesus Hornig ?, Zhennan Fei'*
Emil Knabe !, Hikan Sivencrona !, Beatriz Cabrero-Daniel >*, Christian Berger **
Wolvo Cars, Gothenburg, Sweden
2 Chalmers University of Technology, Department of Computer Science and Engineering,
3 University of Gothenburg, Department of Computer Science and Engineering,
{ali.nouri, zhennan.fei, hakan.sivencrona} @volvocars.com,
{beatriz.cabrero-daniel, christian.berger} @gu.se

Abstract

Automated Driving System (ADS) s a safety-critical software sys-
tem responsible for the interpretation of the vehicle's environment
and making decisions accordingly. The unbounded complexity of
the driving context, including unforeseeable events, necessitate
continuous improvement, often achieved through iterative DevOps
proc However, DevOps processes are themselves comple:
making these imy both time- and re: Au-
tomation in code generation for ADS using Large Language Models
(LLM) is one potential approach to address this challenge, Neverthe-
less, the development of ADS requires rigorous processes to verify,
validate, assess, and qualify the code before it can be deployed in the
vehicle and used. In this study, we developed and evaluated a proto-
type for automatic code generation and assessment using a designed
pipeline of a LLM-based agent, simulation model, and rule-based
feedback generator in an industrial setup. The LLM-generated code
is evaluated automatically in a simulation model against multiple
critical traffic scenarios, and an assessment report is provided as
feedback to the LLM for modification or bug fixing. We report about
the experimental results of the prototype employing Codellama:34b,
DeepSeek (r1:32b and Coder:33b), CodeGemm: fistral:7b, and
GPT4 for Adaptive Cruise Control (ACC) and Unsupervised Colli-
sion Avoidance by Evasive Manoeuvre (CAEM). We finally assessed
the tool with 11 experts at two Original Equipment Manufacturers
(OEMs) by conducting an interview study.

CCS Concepts

« Software and its engineering — Software verification and
validation; - General and reference — Verification: - Comput-
ing methodologies — Natural language processing: - Com-
puter systems organization — Dependable and fault-tolerant
systems and networks

Keywords

DevOps. Autonomous Driving System, automated Software Gener
ation, Large Language Model, Verification, Simulation

ACM Reference Format:
Ali Nouri 2, Johan Andersson *, Kailash De Jesus Hornig ?, Zhennan Fei*
Emil Knabe !, Hikan Sivencrona !, Beatriz Cabrero-Daniel 2, Christian
erger 24, | Volve Cars, Gothenburg, Sweden, * Chalmers University of Tech
nology. Department of Computer Science and Engineering,, * University of
Gothenburg, Department of Computer Science and Enginecring, {alinouri,
zhennan.fei, hakan.sivencrona} @volvocars.com., {beatrizcabrero-danicl,
gu.se . 2025, On Simulation-Guided LLM-based Code
ftware . In Proceedings of
Software Engineering (EASE

ew York, NY, USA, 10 pages.

hitps://doi.org/10.1145/3756681

1 Introduction

To facilitate continuous improvement of Autonomous Driving Sys-
tems (ADS) and expansion of its Operational Design Domain (ODD)
[1), software-defined vehicles rely heavily on software, while the
hardware remains largely unchanged. Over-the-air (OTA) updates
and centralized compute units enable the ongoing enhancement
of functionalities during operation, leveraging DevOps. Rapid soft-
ware updates are not only crucial for guaranteeing the safety of
the system against new, unknown hazardous situations but also for
improving customer experience. Automation can serve as a solution
for rapid and efficient software implementation.

Natural language serves as the main input in various stages of
the software engineering process, including function descriptions,

[2), and scenario 3). As

LLMs have demonstrated their capability in tasks involving natu-
ral language and code generation, their application in automating
code generation is promising, However, their capabilities have been
examined in simple coding tasks [4-6] and not in safety-related
complex applications. Moreover, due to LLMs’ known weaknesses
and the safety-related nature of ADS, the generated code must
follow stringent processes presribed in 1SO 26262 [7] and 150
21448 [1] such as code rev
ware in m« Loop (SiL) and simulation [8] enviro
used to verify the code in a closed loop before it i
hardware and reviewed by engineers. This serves as a preliminary
validations to increase efficiency and improve code quality before
other resource-demanding steps, such as code reviews.

SCAN ME

Large Language Models in Code Co-generation
for Safe Autonomous Vehicles

Ali Nouri'#®) o, Beatriz Cabrero-Daniel**, Zhennan Fei'*

Krishna Ronanki®®, Hitkan Sivencrona!, and Christian Berg
! Volvo Cars, Gothenburg, Sweden
{ali.nouri, zhennan.fei, hakan.sivencronal@volvocars.com
? University of Gothenburg, Sweden
{beatriz.cabrero-daniel, ronanki, christian.berger}@gu.se
3 Chalmers University of Technology, Gothenburg, Sweden

Abstract. Software engineers in various industrial domains are already
using Large Language Models (I) to accelerate the process of imple-
menting parts of software systems. When considering its potential use for
ADAS or AD systems in the automotive context, there is a need to sys-
tematically assess this new setup: LLMs entail a well-documented set of
s for safef ted systs development due to their stochastic na-
"To reduce the effort for code reviewers to evaluate LLM-generated
code, we propose an evaluation pipeline to conduct sanity-checks on
the generated code. We compare the performance of six state-of-the-art
LLMs (CodeLlama, CodeGemma, DeepSeek-rl, DeepSeek-Coders, Mis-
tral, and GPT-4) on four safety-related programming tasks. Addition.
ally, we qualitatively analyse the most frequent faults generated by these
LLMs, ereating a failure-mode catalogue to support human reviewers.
Finally, the limitations and capabilities of LLMs in code generation, and
the use of the proposed pipeline in the existing process, are discussed.

Keywords: DevOps, Autonomous Driving System, Automated Code
Generation, Large Language Model, Verification, Simulation

1 Introduction

Function realisations and improvement in software-defined vehicles require con-
tinuous software updates; hence, rapid, efficient, and continuous software devel-
opment is crucial to maintaining competitiveness and user satisfaction. LLMs can
be seen as a potential element in the software development pipeline, as their ca-
pability in code generation has been demonstrated [10]. However, the limitations
and capabilities of LLMs are under-explored, as they are examined primarily for
simple coding tasks and less for complex and novel tasks that require crea
Generating code with LLMs might require multiple tries, given the LL}

stochastic behaviour [2] and the complexity of the task. Moreover, as an LLM
does not possess a proper understanding of the real world, it might fail to propose
an appropriate strategy in the generated code, that may not be easily detected

2025-09-10

SCAN ME

Al-enabled D evSafeOps for Autonomous Driving Software

Large Language Models in Code Co-generation
for Safe Autonomous Vehicles

Ali Nouri'#(®)o, Beatriz Cabrero-Daniel*?, Zhennan Fei'
shna Ronanki“#, ne al,

L Volvo C Gothenburg,
{ali.nouri, zhennan.fei, hakan.sivencrona
? University of Gothenburg, Sweden
{beatr: abrero-daniel, ronanki, christian.berger}@gu.se
* Chalmers University of Technolog;

wrious industrial domains
Ms) to
'ms. When

n the automotive c
Ms
opment due to their stochastic

LLA

qualitati
LLMs, creating a failure-mode

1 Introduction

Function realisations and improv a d vehicles require con-
tinuous software updates; hence, r and continuous software devel-
opment is crucial to maintaining competitiveness and user satisfaction. LLMs

n as a potential element in the software development pipeline, as their

y in cods ation has been demonstrated [10]. H er, the limitations
and capabilities
simple coding t

C might require multiple tri given the

stochastic behaviour [2] and the complexity of the task. Moreover, as an LLM
does sess a proper understanding of th 1 world, it might fail to prope
an appropriate strategy in the that ma ily detected

Benchmark leakage

N Training
»o/ LLM
. &

Examine

é Pipeline Input h . . —
- ez Code Generator Pipeline Output
Function Description -
[Natural Language] Basehne [Python Codeu
Test Report
Test Cases .
[OpenSCENARIO] [Natural Language, json]
[Pasg/Fail Criteria]
o J
f
! Decision & Control i.» -
:\ (Generated SW) e Actuators
4
L Simulation Environment [esmini]

% Non-Compilable Non-Executable

No successful code for F2,

ed only based

4

1
F1
DeepSeek-r1:32B DeepSeek-Coder:33B

CodeLlama:34B CodeGemma:7B

auked based on codes pass

Failed Successful

F1 F2
Mistral:7B

for F1 and F2

Reinforcement

Learning m

Code

Updating

Pr ompm

code, hence ranked based on runnab)

Verification and Validation

Code Review

@ e
Improve

Reviewer
Examination

Non-Compilable = Failed Successful

gked based on number of codes

.r’\(Q(“ CAEM

GPT4

On Simulation-Guided LLM-based Code Generation
for Safe Autonomous Driving Software

Ali Nouri 2, Johan Andersson 2, Kailash De Jesus Hornig ?, Zhennan Fei
Emil Knabe !, Hikan Sivencrona ', Cabrero-Daniel **, Christian Berger **
Wolvo Cars g, Sweden
“Chalmers University of Technology, Department of Computer Science and Engineering,
3University of Gothenburg, Department of Computer Science and Engineering,
{ali.nouri, zhennan fei, hakan.sivencrona} @volvocars.com,

{beatriz.cabrero-daniel, christian.berger} @gu.se
Abstract Keywords
ADS) is a safety-critical software DevOps, Autonomot are Ge
the interpr 3 ation, Larg 2
ordingly. Th

ing unfor Nouri 2. J rnig , Zhennan
>-Daniel 2

tomation in code generation
(LLM) is one potential approach

the development of ADS requires rigorous processes to verify,

validate, assess, and qualify the ¢ yed in the

d. In this study, we developed and evaluated a proto-

ration and assessment using a designed

pipeline of a LLM-based agent, simulation model, and rule-based

dback generator in an industrial setup. The LLM-generated code

is evaluated autc ly in a s 0 against multiple

critical traffic s

ars.com, {beatriz.cabs
nulation-Gui

Driving Software .
ent in Software Engi

Introduction
To facilitate continuous imp
tems (ADS) and expansion of its Operati Domain (
&) e-defined vehicles rely heavily on software, while th
the-air (OTA) updates
ncement

Automation can serv
oftware implementati
erves as the main input in various stages of
eering — Software verification and ng process, including function descriptions,

meral and reference quirements engine
ing methodologies — Natural language processing: » Com- have demonstrate
puter systems organization — Dependable and fault-tolerant
eneration is promi
xamined in simple coding ta
complex applicati reover, due to LLMs’ known weakne:
and the safe ature of ADS, the ge de must
follow stringent processes preseribed in 1SO 26262 [7] and
n, and valida
wlation [8] environments can
used to efore it is integrated
hardy [his serves as a preliminary
validations to iner oade quality before
thy

Autonomous Driving Software

2025-09-10 Al-enabled D evSa feOps fo

o ey

Function Description
Natural Language

Test Report

SW
| Report I
Generator

Numerical
Log

/Simulation Model [esmini]\

e e e e e e e = ————— = ==

24

Function Description
Natural Language

3 Driving Software

Decision & Control E_’
(Generated SW)

Prompt
You are tasked with writing Python files to control autonomous cars within a
simulated environment. These controller files receive information about the
simulation through a "State" class object, allowing commands to be issued to
a vehic erred to as the Ego car.

State Class Documentation: The "CustomController” interacts with the simulation

via the "State’ class, which provides the following functionalities:

def __init__(self, simulator):

A list of all the cars in the simulation. The "ego" car is at index 0.
self.vehicles =[]

def switch_lane(self, lane id):
Changes the ego car's lane. 1 for left and -1 for right.

Vehicle Class:
Each vehicle in the simulation, including the Ego car, is represented as follows:
def init (self, identity, position, speed, lane id, s, t):
self.id = identity # Integer

Your task is to generate a custom_controller.py file that controlls
dd function description>

25

Function Description

1 class CustomController:l
Natural Language 2 def __init_ (self, state):
5 self.state = state
4
5 def step(self):
6 ego = self.state.vehicles[0]
7 current_lane = ego.lane_id
8 lanes = [-2, -3, -4] # Valid lanes on the road
] imminent_collision = False
10 safe_distance = 20 # Minimum safe distance to consider a lane free (both in front and behind ego)
11
12 # Check if there's a risk of collision in the current lane
13 for vehicle in self.state.vehicles:
14 if vehicle.lane_id == current_lane and vehicle.id != ego.id:
s if vehicle.s > ego.s and vehicle.s — ego.s < safe_distance:
16 imminent_collision = True
17 break
18
SW —_——_——— 19 if imminent_collision:
20 # Attempt to change to a safer lane
LLM—based 21 for lane in lanes:
22 if lane == current_lane:
Generated 23 continue
. 24 if self.is_lane_safe(lane, ego, safe_distance):
COdC(V@I’SlOl’l 1) 25 self.state.switch_lane(lane - current_lane)
26 return
27
28 def is_lane_safe(self, lane_id, ego, safe_distance):
29 "t Checks if the given lane is safe for the ego vehicle to switch into. """
30 for vehicle in self.state.vehicles:
31 if vehicle.lane_id == lane_id:
32 # Check if the vehicle is within a dangerous range
33 distance = abs(vehicle.s - ego.s)
34 if distance < safe_distance:
35 return False
36 return True

2025-09-10 Al-enabled DevSafeOps for Autonomous Driving Software 26

Test Reporﬁ
Report
Generator
Numerical
Log

/Simulation Model [esmini]\

Watch the demo here

SCAN ME

27

Failed
Passed
Passed

Failed

Failed

Passed
Passed

46
47

»
©

50
51
52
53

(R]
o

56
57
58
59

o o
by

=)
@

©
5

Iteration @ reports:

Log based report for scenario: cut-in_high.xosc:

Fail: Ego was involved in a collision at time: 13.3 s with a speed of 33.333333 m/s, colliding with: OverTaker.

Fail: Closest distance Ego comes to any vehicle is 5.63 m to vehicle #2 at time: 13.2 s, which is closer than the allowed minimum of 7 m.
Pass: Greatest absolute lane offset of Ego: 8.00 m at time: 0.0 s, within the allowed maximum of 12.575 m.

Pass: Smallest absolute lane offset of Ego: 4.42 m at time: 14.8 s, above the allowed minimum of 3.425 m.

Log based report for scenario: cut-in_middle.xosc:

Pass: No collisions were detected.

Pass: Closest distance Ego comes to any vehicle is 16.26 m to vehicle #2 at time: 9.9 s, respecting the minimum allowed distance of 7 m.
Pass: Greatest absolute lane offset of Ego: 8.00 m at time: 0.0 s, within the allowed maximum of 12.575 m.

Pass: Smallest absolute lane offset of Ego: 4.42 m at time: 13.0 s, above the allowed minimum of 3.425 m.

Log based report for scenario: cut-in_low.xosc:

Pass: No collisions were detected.

Pass: Closest distance Ego comes to any vehicle is 7.99 m to vehicle #2 at time: 15.5 s, respecting the minimum allowed distance of 7 m.
Pass: Greatest absolute lane offset of Ego: 8.00 m at time: 0.0 s, within the allowed maximum of 12.575 m.

Pass: Smallest absolute lane offset of Ego: 4.42 m at time: 18.6 s, above the allowed minimum of 3.425 m.

Log based report for scenario: cut-in_double_EM.xosc:

Fail: Ego was involved in a collision at time: 16.7 s with a speed of 30.0 m/s, colliding with: OverTaker2.

Fail: Closest distance Ego comes to any vehicle is 1.68 m to vehicle #3 at time: 16.8 s, which is closer than the allowed minimum of 7 m.
Pass: Greatest absolute lane offset of Ego: 8.00 m at time: 0.0 s, within the allowed maximum of 12.575 m.

Pass: Smallest absolute lane offset of Ego: 4.42 m at time: 14.6 s, above the allowed minimum of 3.425 m.

Log based report for scenario: cut-in_block_EM.xosc:

Pass: No collisions were detected.

Fail: Closest distance Ego comes to any vehicle is 6.90 m to vehicle #2 at time: 11.5 s, which is closer than the allowed minimum of 7 m.
Pass: Greatest absolute lane offset of Ego: 11.70 m at time: 13.1 s, within the allowed maximum of 12.7 m.

Pass: Smallest absolute lane offset of Ego: 8.00 m at time: 0.0 s, above the allowed minimum of 3.425 m.

Log based report for scenario: cut-in_empty_commission.xosc:

Pass: Minimum speed of Ego: 30.00 m/s at time: 0.0 s, above the minimum limit of 28 m/s.

Pass: Greatest absolute lane offset of Ego: 8.00 m at time: 0.0 s, within the allowed maximum of 12.575 m.
Pass: Smallest absolute lane offset of Ego: 8.00 m at time: 0.0 s, above the allowed minimum of 3.425 m.

Log based report for scenario: cut-in_meeting_commission.xosc:

Pass: No collisions were detected.

Pass: Minimum speed of Ego: 30.00 m/s at time: 0.0 s, above the minimum limit of 28 m/s.

Pass: Greatest absolute lane offset of Ego: 4.42 m at time: 0.0 s, within the allowed maximum of 6.7 m.
Pass: Smallest absolute lane offset of Ego: 4.42 m at time: 0.0 s, above the allowed minimum of 3.425 m.

28

port
erator

/Simulation Model [esmini]\

M(\us Driving Software

Correction Prompt

You are tasked with writing Python files to control autonomous cars within a simulated
environment. These controller files rece formation about the simulation through a "State”
class object, allowing commands to be issued to a vehicle referred to as the Ego car.

s Documentation: The ‘CustomController interacts with the simulation via the
s the following functionalitie

def init_ (self, simulator):
A list of all the cars in the simulation. The "ego" car is at index 0.
self.vehicles =[]

def switch_lane(self, lane_id):
Changes the ego car's lane. 1 for left and -1 for right.

Vehicle Class:
Each vehicle in the simulation, including the Ego car, is represented as follow
def init_ (self, identity, position, speed, lane id, s, t):
self.id

¢ is a code which failed in some of its tested and its report:
dd the scenario descriptions>
Add the last version of Co
<Add the Test Results>

Your task is to generate a custom controller.py file that controlls <Add function description>

29

Test Report

SW e —»

LLM-based
Generator

Generated
Numerical Code(Version 2)
Log

/Simulation Model [esmini]\

kZO -09-T0 Al-cnabled D evSaicOps for szwusDriving Software

k version 1

class CustomController:
def __init__(self, state):

de

de

de

de

de

-+

e

f

-

U

self.state = state
self.reaction_time = 1.5 # seconds
self.braking_capacity = -5 # m/s"2

step(self):

ego = self.state.vehicles[0]

current_lane = ego.lane_id

lanes = [-2, -3, -4] # Valid lanes on the road

for vehicle in self.state.vehicles:
if vehicle.lane_id == current_lane and vehicle.id != ego.id:
relative_speed = ego.speed - vehicle.speed
time_to_collision = (vehicle.s - ego.s) / relative_speed if relative_speed != @ else float('inf')

if time_to_collision < self.reaction_time:
if not self.attempt_lane_change(ego):
Adjust speed to prevent collision
self.adjust_speed(ego, vehicle, relative_speed)

attempt_lane_change(self, ego):
current_lane = ego.lane_id
for lane in [-2, -3, -4]:
if lane != current_lane and self.is_lane_safe(lane, ego, self.calculate_safe_distance(ego.speed)):
self.state.switch_lane(lane - current_lane)
return True
return False

is_lane_safe(self, lane_id, ego, safe_distance):
for vehicle in self.state.vehicles:
if vehicle.lane_id == lane_id:
distance = abs(vehicle.s - ego.s)
if distance < safe_distance:
return False
return True

calculate_safe_distance(self, speed):
return speed * self.reaction_time + (speed *x 2) / (2 % abs(self.braking_capacity))

adjust_speed(self, ego, vehicle, relative_speed):

if relative_speed < @: # Ego is faster than the vehicle ahead
new_speed = max(@, vehicle.speed - 5)
ego.speed = new_speed

else:
ego.speed += 5 # Try to increase speed to avoid collision

30

/Simulation Model [esmini]\

All Test Cases

Watch the demo here

SCAN ME

145 Iteration 1 reports:

146 Log based report for scenario: cut-in_high.xosc: Passed

147 Pass: No collisions were detected.

148 Pass: Closest distance Ego comes to any vehicle is 24.27 m to vehicle #2 at time: 8.0 s, respecting the minimum allowed distance of 7 m.

149 Pass: Greatest absolute lane offset of Ego: 8.08 m at time: 8.0 s, within the allowed maximum of 12.575 m.
150 Pass: Smallest absolute lane offset of Ego: 4.42 m at time: 11.1 s, above the allowed minimum of 3.425 m.

151
152 Log based report for scenario: cut—in_middle.xus::Passed

153 Pass: No collisions were detected.

154 Pass: Closest distance Ego comes to any vehicle is 16.26 m to vehicle #2 at time: 9.9 s, respecting the minimum allowed distance of 7 m.
155 Pass: Greatest absolute lane offset of Ego: 8.0@0 m at time: 8.8 s, within the allowed maximum of 12.575 m.

156 Pass: Smallest absolute lane offset of Ego: 4.42 m at time: 13.@ s, above the allowed minimum of 3.425 m.

157

158 Log based report for scenario: cut-in_low,xosc: P ass ed

159 Pass: No collisions were detected.

160 Pass: Closest distance Ego comes to any vehicle is 7.99 m to vehicle #2 at time: 15.5 s, respecting the minimum allowed distance of 7 m.

161 Pass: Greatest absolute lane offset of Ego: 8.00 m at time: 8.8 s, within the allowed maximum of 12.575 m.
162 Pass: Smallest absolute lane offset of Ego: 4.42 m at time: 18.6 s, above the allowed minimum of 3.425 m.

163
164 Log based report for scenario: cut-in_double_EM.xosc: Pass ed
—— ————— 165 Pass: No collisions were detected.
Test Report 166 Pass: Closest distance Ego comes to any vehicle is 13.81 m to vehicle #3 at time: 16.4 s, respecting the minimum allowed distance of 7 m.

167 Pass: Greatest absolute lane offset of Ego: 11.70 m at time: 18.4 s, within the allowed maximum of 12.575 m.
Generated 168 Pass: Smallest absolute lane offset of Ego: 4.42 m at time: 11.5 s, above the allowed minimum of 3.425 m.

Report 169
Report fOI‘ 176 Log based report for scenario: cut-in_block_EM.xosc: PaSS ed
Generator 171 Pass: No collisions were detected.
TeSt Cases 172 Pass: Closest distance Ego comes to any vehicle is 22.14 m to vehicle #2 at time: 6.8 s, respecting the minimum allowed distance of 7 m.
173 Pass: Greatest absolute lane offset of Ego: 11.70 m at time: 9.9 s, within the allowed maximum of 12.7 m.
174 Pass: Smallest absolute lane offset of Ego: 8.0@ m at time: @.® s, above the allowed minimum of 3.425 m.

Numerical 175
Lo

176 Log based report for scenario: cut-in_empty_commission.xosc:

177 Pass: Minimum speed of Ego: 30.0@ m/s at time: 8.0 s, above the minimum limit of m/s.
178 Pass: Greatest absolute lane offset of Ego: 8.0@0 m at time: 8.8 s, within the allowed maximum of 12.575 m.
179 Pass: Smallest absolute lane offset of Ego: 8.080 m at time: 8.0 s, above the allowed minimum of 3.425 m.

/Simulation Model [esmini]\ 180
Passed

181 Log based report for scenario: cut-in_meeting_commission.xosc:

182 Pass: No collisions were detected.

183 Pass: Minimum speed of Ego: 30.80 m/s at time: ©.0 s, above the minimum limit of 28 m/s.

184 Pass: Greatest absolute lane offset of Ego: 4.42 m at time: @.0 s, within the allowed maximum of 6.7 m.
185 Pass: Smallest absolute lane offset of Ego: 4.42 m at time: 8.0 s, above the allowed minimum of 3.425 m.
186

187 1 iterations of corrections were performed. The final controller was successful.

188

M‘mus Driving Software 32

2025-09-10

failed 1+ test #non-compilable Successful (first version)

No successful code, hence ranked based on compilable codes
// 1 1 |
| / /4/ / /

CodeLlama:34B

Al-enabled DevSafeOps for Autonomou:

| ACC CAEM | | ACC CAEM|
DeepSeek-r1:32B DeepnSeek-Coder:33B

s Driving Software

| ACC CAEM!
CodeGemma:7B

successful (after correction)

| ACC CAEM |
Mistral:7B

33

2025-09-10

Al-er

nabled D evSafeOps for Autonomous Driving Software

CHALMERS

URIVEREITY OF TECHNOLOGY

34

	Volvo Cars
	Slide 1: AI-enabled DevSafeOps for Autonomous Driving Software Ali Nouri
	Slide 2
	Slide 3: Goal
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13: Designed Pipeline of Prompts
	Slide 16: Evaluation: Experts Review Results
	Slide 17: Evaluation: Interview Results
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34: Ali Nouri

