

Safety Assurance & AI in the Automotive Domain

- AI Standards
- Example: AI+Based SoC estimation for EVs

Fredrik Warg <fredrik.warg@ri.se>

Martin Skoglund, Aria Mirzai, Anders Thorsén, Karl Lundgren, Peter Folkesson, Bastian Havers-Zulka

Context

Al Act²

AI in safety-critical systems

AI in safety-critical systems

Source: A. V. Silva Neto et al.: Safety Assurance of Al-Based Systems: A Systematic Literature Review on the State of the Art and Guidelines for Future Work, 2022.

Test tool

- Test case generation
- Analysis of results

Component in deployed system

- Object detection
- Decision-making
- Decision support

Development tool

- Coding
- Architecture

Safety analysis

- Automated analysis
- Assessment tools

AI Standardization

[System safety]

Information technology – Artificial intelligence –

Guidance on risk management

[Trustworthiness]

Information technology — Artificial intelligence —

Overview of trustworthiness

in artificial intelligence

[Functional safety]

Artificial intelligence – Functional safety and Al systems

[Trustworthiness]

Information technology —
Artificial intelligence (AI) —
Bias in AI systems and AI
aided decision making

[Foundational]

Information technology — Artificial intelligence — Artificial intelligence concepts and terminology

[Foundational]

Framework for Artificial Intelligence (AI) Systems Using Machine Learning (ML)

[Life-cycle]

Information technology — Artificial intelligence — Data life cycle framework

[Trustworthiness]

Artificial Intelligence (AI) —
Assessment of the robustness of neural networks

[Life-cycle]

Information technology —
Artificial intelligence —
Al system life cycle processes

[Quality]

Information technology — Artificial intelligence —
Assessment of machine learning classification performance

[System safety]

Road vehicles — Safety and artificial intelligence

ISO/PAS 8800 Framework

Data Lifecycle

- Continuous lifecycle for post-deployment changes
 - Concept/data/semantic drift
 - Incidents/threats
- Data collection (pre- and post-deployment)
 - Al model training data
 - Test data
 - Al model test data
 - Scenario-based test data
- In-service monitoring and reporting (ISMR)
 - Metric/Incident reporting
 - Continuous risk assessment

V&V Methods

- Choice of V&V methods based on multiple parameters
 - Al requirements
 - Test purpose
 - Model type
 - Model access
 - Learning paradigm
 - Type of task performed
- No fixed checklist in standards

Benchmarking

Standardized test suites. Performance is measured against annotated reference data or desired answers.

Robustness testing

Tests for robustness with respect to input data, e.g., simulating input noise.

Statistical testing

Evaluation of metrics defined within the Al safety requirements for the system

Edge cases

Testing values at the edge of the input space and unusual cases/combinations.

Sampling-based methods Methods to guide testing to areas of the input space with higher error distribution

Explainability

Techniques to make the model's decisions (semi-)transparent. Can be used identify sources of unwanted behaviors.

Review/Expertise

Test cases constructed based on expert knowledge or based on model/data review.

Formal verification

Methods based on mathematical proofs to specify and verify properties.

Scenario-based tests

Stimulating model with collected data to evaluate real-world environment response

Gradient-based search

Use of knowledge of internal model parameters to guide generation of test cases

Case-study: AI in the Automotive Domain

Case-study: State-of-Charge (SOC) Estimation

- SOC measures remaining charge
 - E.g., range information for an EV
- Critical functions
 - Prevent overcharging
 - Prevent deep discharging
- Worst case: Overcharging → heat generation → electrolyte decomposition
 - \rightarrow thermal runway \rightarrow fire/toxic gases

From paper:

Al Safety Assurance in Electric Vehicles: A Case Study on Al-Driven SOC Estimation (EVS 38, June 2025) https://arxiv.org/abs/2509.03270 Martin Skoglund, Fredrik Warg, Aria Mirzai, Anders Thorsén, Karl Lundgren, Peter Folkesson, Bastian Havers-Zulka

Traditional method

- Typically, a combination of methods for better accuracy
- Challenges: non-linear behavior, aging and parameter drift, individual cell differences, varying operating conditions

AI-based method

- Ability to capture the complex and nonlinear behaviour, adapts to variations
- Lack of interpretability, difficult to trust for safety-critical systems

Relevant Standards for SOC Estimator

- Three main automotive safety standards
 - ISO 26262 Functional safety
 - ISO 21448 Safety of the intended functionality
 - ISO/PAS 8800 Safety and artificial intelligence
- For our SOC, use of ISO 26262 and ISO/PAS 8800

- Al components which are not an Al model developed with ISO 26262
- AI model, use of ISO/PAS 8800

SOC Implementation

Model was trained on an open dataset (LG 18650HG2 Li-ion Battery)²

No additional safety mechanisms

Al-based SOC estimator from literature
 Recurrent NN with Long Short-Term Memory that generates
 SOC estimations based on N preceding steps¹
 Parameter values with good performance for uncorrupted input were chosen

¹ K. L. Wong, M. Bosello, R. Tse, C. Falcomer, C. Rossi, and G. Pau, "Li-Ion Batteries State-of-Charge Estimation Using Deep LSTM at Various Battery Specifications and Discharge Cycles," in Proceedings of the Conference on Information Technology for Social Good, ser. GoodIT '21. New York, NY, USA: Association for Computing Machinery, 2021, p. 85–90. [Online] https://doi.org/10.1145/3462203.3475878 ² P. Kollmeyer, C. Vidal, M. Naguib, and M. Skells. (2020) LG 18650HG2 Li-ion Battery Data and Example Deep Neural Network xEV SOC Estimator Script. Version 3. [Online] https://data.mendelev.com/datasets/cp3473x7xy/3

\$

Al-based State of Charge

Estimator

宇

Estimated SoC

Output

Initial Experiments

- Purpose of experiment:
 - Investigate robustness against common input (sensor) faults
 - Characterize behaviour to determine need for safety mechanisms
- First experiment: Fault-injection with stuck-at fault model for sensor inputs

Effect of Stuck-At 0 per input type, prediction-level

Effect of stuck-at 0

- Error (as one might expect) higher for high-value bits
- Significant difference in sensitivity between input parameters
- Error on output (prediction-level) not necessarily reflecting the most significant errors on input (data-level) side

Deviation heatmap (exponent bits)

 High prediction deviation for voltage stuck-at 0 faults at high SoC → risk of overcharging

Potential Safety Mechanisms

- Safety envelope can be used for SOC
 - Guard against overcharging fault mode
 - Independence from AI SOC, conservative response
- Input range checking and/or redundant inputs
- Data augmentation
 - Expand training set to include typical sensor faults
- Adversarial training
 - Robustness against deliberate attacks
- Ensemble methods
 - Combining predictions from diverse models
- Out-of-distribution detection

Summary

- Rapidly evolving legislative and standards landscape affecting AI in critical systems
- Several existing safety assurance frameworks
 - But more experience needed
 - Example: AI-based State-of-charge estimator
- Monitoring and continuous assurance necessary for Al in safety-critical systems

Dr. Fredrik Warg

Senior Researcher

Safety and Transport Department Electrification and Dependability Unit Dependable Transport Systems

fredrik.warg@ri.se

Research interests:

Safety assurance and V&V methods | Connected automated vehicles | Safe AI | Software engineering for dependable systems | Security-informed safety

@ri.se: https://www.ri.se/en/person/fredrik-warg @orcid: https://orcid.org/0000-0003-4069-6252

